Astronomy AST-1002 Section 0459 Discover the Universe Fall 2017

Similar documents
Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

PHYS 160 Astronomy Test #1 Fall 2017 Version B

Astronomy 291. Professor Bradley M. Peterson

Introduction to Astronomy

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Observing the Universe for Yourself

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Introduction To Modern Astronomy I: Solar System

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Test 1 Review Chapter 1 Our place in the universe

Chapter 2 Discovering the Universe for Yourself

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Dr. Tariq Al-Abdullah

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016

Chapter 2 Discovering the Universe for Yourself

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950

Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Unit 1: The Earth in the Universe

6/17. Universe from Smallest to Largest:

Seasons. What causes the seasons?

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

lightyears observable universe astronomical unit po- laris perihelion Milky Way

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

Astr 1050 Mon. Jan. 31, 2017

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

Tools of Astronomy Tools of Astronomy

Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ

ASTR 1P01 Test 1, May 2018 Page 1 BROCK UNIVERSITY. Test 1: Spring 2018 Number of pages: 10 Course: ASTR 1P01, Section 1 Number of students: 598

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Astronomy 103: First Exam

CHAPTER 2 A USER'S GUIDE TO THE SKY

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Name and Student ID Section Day/Time:

AST 1002 Section 1 (Dobrosavljevic) PLANETS, STARS, GALAXIES

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Discovering the Night Sky

Discovering the Night Sky

ASTR 1P01 Test 1, September 2018 Page 1 BROCK UNIVERSITY

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1)

ASTR 1P01 Test 1, May 2017 Page 1 BROCK UNIVERSITY. Test 1: May 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of students: 614

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory

3. The diagram below shows the Moon at four positions in its orbit around Earth as viewed from above the North Pole.

The Earth, Moon, and Sky. Lecture 5 1/31/2017

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images

Astronomy 100 Section 2 MWF Greg Hall

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

Name: Exam 1, 9/30/05

Earth Science, 13e Tarbuck & Lutgens

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion).

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Name: Class: Date: ID: A

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

Guiding Questions. Discovering the Night Sky. iclicker Qustion

10-20 billion years old

Chapter 22.2 The Earth- Moon-Sun System. Chapter 22.3: Earth s Moon

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener

PHAS 1511: Foundations of Astronomy

1UNIT. The Universe. What do you remember? Key language. Content objectives

Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.

Name Regents Review Packet #2 Date

A2 Principi di Astrofisica. Coordinate Celesti

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than

Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014

Astronomy 11. No, this course isn t all about Star Wars

2. Knowing the Heavens

29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A

Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens

Fundamentals of Satellite technology

2.1 Patterns in the Night Sky

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Discovering the Universe for Yourself

A User s Guide to the Sky

Summary Sheet #1 for Astronomy Main Lesson

D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified

Question 1. What motion is responsible for the apparent motion of the constellations (east to west) across the sky?

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

Lecture 2 Motions in the Sky September 10, 2018

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are

a. 0.1 AU b. 10 AU c light years d light years

Transcription:

Astronomy AST-1002 Section 0459 Discover the Universe Fall 2017 Instructor: Dr. Francisco Reyes Web Page: http://www.astro.ufl.edu/~freyes/classes/ast1002/index.htm Textbook: Astronomy: A Beginners Guide to the Universe: Chaisson and McMillan, 8th Edition

Instructor: Dr. Francisco Reyes Office: 12 Bryant Space Science Center (Building 38) Phone: (352) 294-1885 Email :freyes@astro.ufl.edu Class web page: www.astro.ufl.edu/~freyes/classes/ast1002/index.htm In this web page you will find the syllabus, copies of Power Point presentations, form and instructions for the Observing Project, scores, homework and other class material. We may be using Canvas later in the semester Office hours: Monday 1:00-2:30 PM and Wednesday, 12:30-1:30 PM (or by appointment)

Astronomy is an amazing and interesting field! Let s take a look to some recent news and discoveries Images of the Total Solar Eclipse August 21, 2017 Images and sequence courtesy of Dr. Naibi Marinas, UF Astronomy Dept. A sequence of the phases of the eclipse Solar Corona

Images of the Sun from 08/26/2015 Visual image showing sunspot 2403 Magnetic field configuration (Solar Dynamic Observatory, UV image)

A few recent news and discoveries: Comets An image of the nucleus of Comet 67P taken by the Rosetta spacecraft on August, 2015. Taken when the comet was near the closest distance from the Sun. These are the first high resolution images of jets of gas ejected from the nucleus of a comet! The size of the nucleus is about 4 km Comet Siding Spring C/2013 passing close to Mars (132,000 km from its surface) on October 19, 2014! It was the first time to see a comet passing so close to a terrestrial planet! Mars was at 1.6 AU from Earth

More recent and interesting news Jets of water vapor in Enceladus (A satellite of Saturn) imaged by the Cassini spacecraft. Molecules present in the jets are water, carbon dioxide, methane and ammonia The satellite as a diameter of 500 km The Cassini spacecraft is at the present in orbit around Saturn Discovery of an exoplanet with a mass close the mass of Earth and orbiting a star inside the habitable zone. Discovered by the Kepler spacecraft team. Reported on April, 2014. The system Kepler-186 has 5 planets and it is located at 500 light years from Earth

More news on the exploration of the Solar System New Horizon spacecraft: Pluto fly-by on July 14, 2015. This is the first spacecraft to reach Pluto. It is providing the first high resolution images of Pluto Curiosity rover landed on Mars in August 2012. It has been analyzing and taken images of the Martian soil.

More news on exploration of the Solar System The search for life in the solar system. Europa (a satellite of Jupiter). It has an ocean of liquid water under the frosted crust. The energy to maintain liquid water comes from dissipation of tidal heat. This satellite is the target for a mission that may launch around 2020

More news on exploration of the Solar System Titan (a satellite of Saturn). It has a thick atmosphere composed of complex organic molecules (Hydrocarbons). It has lakes of liquid methane on its surface and an ocean of liquid water under the frozen surface. At the present. the Cassini spacecraft is in orbit around Saturn and exploring Titan

Chapter 0: Charting the Heavens Reading assignment: Chapter 0 Charting the Heavens

Learning outcome Understand the basic levels of structure of the Universe Understand how astronomers use the celestial sphere to represent the sky. What is a constellation? The celestial coordinate system used to locate objects and the use of angular measurements to locate and find distances in the celestial sphere Account for the motions of the Sun, moon, planets and stars in the celestial sphere Understand why the tilt of the rotational axis of Earth is related to the seasons Explain the changing appearance of the moon (lunar phases) Understand the reasons for having solar and lunar eclipses and what are the phases of the moon for these two types of eclipses. Understand the geometric method used to measure distances and sizes to objects inaccessible. Distinguish between a scientific theory and a theory (or idea ) used in common language.

We will study our solar system Stars and star clusters We will continue with the Sun Pleiades Cluster (Seven Sisters, Subaru) Nebulae Ring Nebula (Planetary nebula)

Andromeda Galaxy, the closest spiral galaxy to the Milky Way (our galaxy) We will explore our Galaxy, the Milky Way and other galaxies...

And beyond... Cluster of galaxies Abell 2744

Andromeda galaxy An interesting question: What is our place in the universe?

Understanding SIZES and DISTANCES in Astronomy In this class we will use the metric system. In this slide let s use the English system. It may help to give you a better idea of distances: The Moon is 240,000 miles away Driving at 80 miles/hour, it would take 3000 hours to get there - or about 4 months! Distance to nearest star (Alpha Centauri): 20 000 000 000 000 miles or 2x10 13 miles Size of our galaxy (Milky Way): 200 000 000 000 000 000 miles or 2x10 17 miles Distance to the Andromeda galaxy (The closest spiral galaxy): 20 000 000 000 000 000 000 miles or 2x10 19 miles

Scale model of the Universe If the Earth were the size of an eraser tip.. The Moon is 1 foot away The Sun is just over a football field away (125 yards) The nearest star is 16,000 miles away! (About twice the diameter of the Earth)

Commonly Used Distance Units: In astronomy (and in sciences in general) we use the metric system In astronomy we have to deal with large distances, we need to use powers of ten 1 m (meter) 1 yard 1 km (kilometer) = 1,000 m =10 3 m 0.62 miles 1 AU (Astronomical Unit) = Distance from Earth to Sun = 150,000,000 km (150x10 6 km) ( ~93,000,000 miles). The AU is a useful unit to measure distances within the solar system 1 light-year (ly) = Distance traveled by light in 1 year = 10 12 km. Light-year is a useful unit to measure distances within the Milky Way and to other galaxies (Speed of light c = 300,000 km/s = 3 x 10 5 km/s = 186,000 miles/s)

How long does it take light to reach Earth from: (Velocity = space/time v= s/t t = s/v for light, t = s/c) The Moon? 1.4 seconds ( Distance ~ 385,000 km) The Sun? 8 minutes ( Distance ~150x 10 6 km) Nearest star (Alpha Centauri)? 4 years (4 ly) Center of our Galaxy? 26,000 years (26,000 ly) Andromeda Galaxy? 2 x 10 6 years Distant galaxies? billions of years When we see the nearest star, we see the star has it was 4 years ago We see distant galaxies has they were billions of years ago Important: We see distant objects as they were in the past!

Our study of the Universe begins by examining the Sky: stars, planets, the Sun, the Moon Constellations are random configurations of stars. The names of most of the constellations are known from ancient times Humans have the tendency to connect bright stars into patterns and configurations and form figures. Some constellations are given names of mythological heroes or animals There are 88 constellation in the sky

An example of a constellation: Orion the Hunter This is what you see in the sky This is what the ancient saw This is what it is in space Stars making up a constellation are generally not close together in space

The celestial sphere Stars appear to be attached to a giant sphere extended around the Earth and rotating East to West This is called the Celestial Sphere The motion of the stars from East to West is the result of the Earth s rotation from West to East The celestial equator: The projection of the terrestrial equator onto the celestial sphere Earth s rotation axis intersects the celestial sphere at the North and South celestial poles

If we take a long exposure image, stars appear to rotate around the North Celestial Pole: Polaris (North Star) is close to the North Celestial Pole

The celestial coordinates The projection of the terrestrial coordinate system of longitude and latitudes on the celestial sphere generates the set of celestial coordinates. The celestial coordinates are called Right Ascension (RA) and Declination (Dec or dec) Ecliptic Ecliptic: Path of the Sun in the celestial sphere

Celestial Coordinates Right Ascension = Time to rotate through a given angle (The angle is measured in hours-minutes-sec) Similar to Longitude on Earth (The reference, 0 hours of RA is at the position where the Celestial equator crosses the Ecliptic, the vernal equinox). Range of values: 0 to 24 hours Declination = Angle in degrees north/south of the Celestial equator Similar to Latitude on Earth (The reference, 0 degrees of Dec is at the Celestial equator) Range of values: 0 to +90 degrees and 0 to -90 degrees (+) values in Northern hemisphere, (-) values in Southern hemisphere

What about angles on the sky? How do we measure them? A practical way to estimate angles in the sky

Angular size of the Sun and the Moon The Moon and the Sun, coincidentally, have nearly the same angular size or angular diameter, about 0.5 degrees. The Moon is about 380,000 km away but only 3,300 km diameter The Sun is 150,000,000 km away and about 1,400,000 km diameter Angular diameter (Around 0.5 degrees)

Earth s Rotational and Orbital Motion The Earth rotates on its axis once every day. The Earth orbits the Sun once every year. This generates two types of days, sidereal and solar days Solar day = 24 hours (one rotation of the Earth relative to the Sun) 1 sidereal day later 1 solar day later Sidereal day = 23 hr 56min (one rotation of the Earth relative to a reference star) The Earth must rotate an extra 0.986 degrees to face the Sun. Earth takes about 4 minutes to rotates 0.986 degrees

Over the course of a year, the dark (night) side of the Earth (night-time) faces different directions in the sky. Thus, we see different stars and constellations in the night sky during different months. The zodiac is a special set of 12 constellations that happen to lie in the same plane as the Earth s orbital plane around the Sun. If we could see the stars during the day, the Sun would appear to move through these constellations over the year. The apparent path of the Sun through the sky (and through the zodiac constellations) over the course of a year is called the ecliptic.

Motion of Sun along the ecliptic on the celestial sphere throughout the year. The Sun crosses the celestial equator twice a year; at the vernal equinox around March 21st and the autumnal equinox around September 21 st Summer solstice occurs around June 21. Winter solstice occurs around December 21 Autumnal Equinox Winter solstice Summer solstice

Zenith: the point in the sky straight overhead Meridian: the circle that passes through the Zenith and the two celestial poles The ecliptic in an equatorial (RA and Dec) sky map How the motion of the Sun along the ecliptic appears to observers on Earth? The Sun reaches it highest point in the sky when it crosses the meridian around June 21 (Summer solstice). The Sun rises early and set later in the day. The Sun stays up in the sky longer during the summer It reaches the lowest point when it crosses the meridian on December 21 (Winter solstice). The sun rises late and set earlier. It stay up in the sky a shorter period.

Path of the Sun in summer and winter Path of the Sun in the summer and winter Path of the Sun in summer and winter from a mid northern latitude looking south

The Sun s trajectory for the winter solstice (Dec. 21, 2015) from a location north of England

Let s consider the following statement: We have seasons because the Earth is closer to the Sun in summer and farther from the Sun in winter An answer: It make sense: It is hotter in the summer so Earth must be closer to the Sun in summer and farther from the Sun in winter.

Let s consider some facts Fact: Actually it is the opposite, Earth is closer to the Sun during the north hemisphere winter and farther during the north hemisphere summer (Reason: Earth has an elliptical orbit) Another fact: When it is summer in north America, it is winter in Australia) Seasons are opposite in the N and S hemispheres, so the argument about distance from the Sun is invalid. Distance cannot explain the seasons. The real reason for seasons involves Earth s axis tilt.

The Earth rotation axis is tilted 23.5 from the perpendicular to the plane of the ecliptic Why this is important? Sun Earth

The reason for the seasons: The 23.5 degrees tilt of the Earth rotational axis Colder temperatures in winter are a result of: Sun stays lower in the sky during the day (sunlight less direct). Sun is above the horizon for shorter periods (shorter days).

Another view of the reason for the seasons: The angle of illumination of the Sun Questions: What would happens to the seasons if the rotational axis is perpendicular to the ecliptic? What would be the orientation of the ecliptic respect to the celestial equator if the rotational axis is perpendicular to the plane of the ecliptic?

An important effect: Precession of the Equinoxes Gravitational pull of the Sun and the Moon on the Earth causes the Earth s spin axis to precess - like a top that is spinning down. As a result, the celestial poles point in different directions in the sky as the Earth precesses. For example, the north celestial pole is now close to the star Polaris, but in 9,000 years, it will be close to the star Vega. The Precession period is ~26,000 years.

An important effect: Precession of the Equinoxes Tropical year: The interval of time from one equinox to the next. It correspond to 365.242 solar days Sidereal year: The interval of time for the Earth to complete one orbit around the Sun. It is 365.256 solar days long, 20 minutes longer than the tropical year. The reason for the difference between the tropical and sidereal year is due to precession. The tropical year is the year in our calendar. The seasons will remain on the same months. But the constellations will change. Example: Orion is a winter constellation for the north hemisphere. In 13,000 years it will be a summer constellation.

The Moon: Why do we see phases? The Moon emits no visible light of its own shines by reflecting light from the Sun The half of the Moon facing the Sun is always lit We see a combination of lit and dark areas

Phases of the Moon Half of Moon is illuminated by Sun and half is dark. We see a changing combination of the bright and dark faces as the Moon orbits the Earth Depending on the angle between the Moon and the Sun as seen from Earth, is the combination of bright and dark areas that we see. Important: At new moon, we only see the dark half area of the moon. At full moon we only see the illuminated half area of the moon Examples of rising and setting times of the moon: At new moon, the moon rises at sunrise and sets at sunset At full moon, the moon rises at sunset and set at sunrise Important position Important position

The Moon and Sun The Moon played an important role in ancient astronomy. Calendars and religious observances were tied to its phases and cycles. Our calendar is based on the lunar orbit. Lunar Phases: The Moon goes through phases based on its position relative to the Earth and Sun The complete cycle of lunar phases from new moon to the next new moon takes about 29 days. The age of the moon is the number of days since new moon. We always see the same face of the Moon. It rotates on its axis in exactly the same time it takes to orbit the Earth (Synchronous rotation). We will explore this later in Chapter 5

Sidereal and Synodic month Sidereal month: The time for the moon to complete one revolution respect to a reference star. The duration of the sidereal month is 27.3 days Synodic month: The time for the Moon to complete a full cycle of phases (Example from new moon to the next new moon). The reference is the Sun. The duration of the synodic month is 29.5 days

Eclipses Lunar Eclipse The Earth blocks the Sun s light from the Moon The Sun and the Moon must be in opposite direction as seen from Earth The phase of the moon must be full Moon Can be seen from anywhere on the Earth where the Moon is visible umbra penumbra

Solar Eclipse The Moon blocks the Sun s light from the Earth (Coincidentally, the Moon and Sun have the same angular size, around 0.5 degrees!) The phase of the Moon must be new Moon Solar eclipses can only be seen from specific places on Earth, along a narrow path Three types of solar eclipses: Total, partial and annular

Another view of a solar eclipse

This is what you see in a total solar eclipse

Why some solar eclipses are annular? The elliptical orbit of the Moon

The moon has an elliptical orbit The minimum distance is around 356,000 km The maximum distance is around 406,000 km When the moon is at the maximum distance, the angular diameter of the moon is smaller than the angular diameter of the sun. A condition for an annular solar eclipse When the full moon coincide when it is a the minimum distance (at perigee) it is normally called Super Moon (Not an astronomical term) On Sunday December 3 rd the full moon will coincide when the moon is close to perigee (closest distance ~357,492 km on December 4th). Largest in 2017.

Total solar eclipse paths from 2009 to 2030 The last total solar eclipse of August 21, 2017 Next total eclipse for the US: April 8, 2024

The path of totality for the August 21, 2017 total solar eclipse

Solar eclipses occur at new moon and lunar eclipses occur at full moon Question: Why don t we see eclipses every month? The Moon s orbital plane is tilted 5 degrees to the ecliptic (plane in which Earth orbits the Sun). Eclipses therefore occur only when the Moon crosses the ecliptic while it is a new or full moon. For other configurations (Moon-Sun-Earth), the moon will be above or below the ecliptic

Parallax and stellar parallax: How do we determine distances to nearby stars? The concept of parallax The apparent displacement of the foreground object (pencil) respect to the background as the observer s location changes (distance between eyeballs) is known as parallax. Why is elementary geometry important for measuring distances in astronomy? Stellar parallax A nearby object (planet or star) will change position respect to the background of stars if it is observed from two sites separated by a terrestrial diameter. If we measure the angle of displacement of the object and we know the length of the baseline (Earth diameter) we can calculate the distance to the object. The amount of parallax is inversely proportional to an object s distance

Science and the Scientific Method Science is a step-by-step process for investigating the physical world and the natural phenomena using natural laws and observed phenomena. In general it is a slow process. It require careful observations and testing before one can start to formulate an idea to explain a phenomenon. Experimentation and observation are important part of the inquire. A theory or a framework of ideas to explain a set of observations that can also make predictions about a phenomenon are part of the process. But the theory must be testable. The assumptions and predictions are subject to experimentation. The observations must verify the predictions of the theory. A theory in science has a different meaning from the normal use of the word theory. It is not just an idea to explain something. The scientific method involve theory and experimentation. A phenomenon can be discovered during an observation, then a theory must be constructed to explain the phenomenon and make predictions. A theory in Physics and other sciences including Astronomy may involve equations. The process can start at any point in the circle and may continue forever.