Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Similar documents
Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself

Observing the Universe for Yourself

Dive into Saturn.

2.2 The Reason for Seasons

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

Welcome back. Scale. Week 2 Updates. PHYS 1302 Astronomy of the Solar System

2.1 Patterns in the Night Sky

The Cause of the Seasons

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Homework 1 (from text) Latest Deep Impact Results: 2. Discovering the Universe for Yourself.

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Discovering the Universe for Yourself

Motions of the Earth

Seasons. What causes the seasons?

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1)

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016

Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

Astr 1050 Mon. Jan. 31, 2017

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic

Eclipses September 12th, 2013

The Cosmic Perspective, 7e (Bennett et al.) Chapter 2 Discovering the Universe for Yourself. 2.1 Multiple-Choice Questions

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Summary Sheet #1 for Astronomy Main Lesson

PHYS 160 Astronomy Test #1 Fall 2017 Version B

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

4 Solar System and Time

Dr. Tariq Al-Abdullah

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Discovering the Night Sky

Discovering the Night Sky

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0

Astronomy 101: 9/18/2008

Ch. 2 Discovering the Universe for Yourself

The Essential Cosmic Perspective, 6e (Bennett/Donahue/Schneider/Voit) Chapter 2 Discovering the Universe for Yourself

Today. Tropics & Arctics Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Name: Exam 1, 9/30/05

Observing the Night Sky: Locating Objects

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).

6/17. Universe from Smallest to Largest:

Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014

[04] Seasons, Phases, and Eclipses (9/7/17)

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Introduction To Modern Astronomy I: Solar System

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Practice Exam #3. Part 1: The Circumpolar Constellations

Science : Introduction to Astronomy. Lecture 2 : Visual Astronomy -- Stars and Planets. Robert Fisher

A User s Guide to the Sky

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Lecture 4: August 30, 2010

Name: Class: Date: ID: A

Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time

2. Knowing the Heavens

Earth is rotating on its own axis

lightyears observable universe astronomical unit po- laris perihelion Milky Way

The Sky. Day sky: the Sun, occasionally the Moon. Night Sky: stars, and sometimes the Moon

Astronomy 103: First Exam

The ecliptic and the sidereal motion of the sun Moon and the planets on it.

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position.

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

UNIT 3: EARTH S MOTIONS

Academic Year Second Term. Science Revision Sheet. Grade

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

Daily & Annual Motions

Unit 2. Cycles of the Sky

Day, Night & the Seasons. Lecture 2 1/21/2014

Today FIRST HOMEWORK DUE NEXT TIME. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Alien Skies. Todd Timberlake

CHAPTER 2 A USER'S GUIDE TO THE SKY

Chapter 2. Discovering the Universe for Yourself

Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer.

3. a. In the figure below, indicate the direction of the Sun with an arrow.

Introduction to Astronomy

ASTR 1P01 Test 1, September 2018 Page 1 BROCK UNIVERSITY

Introduction To Astronomy Lesson 1

Astronomy 291. Professor Bradley M. Peterson

Practice Seasons Moon Quiz

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

The position of the Sun on the celestial sphere at the solstices and the equinoxes.

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Astronomy 11. No, this course isn t all about Star Wars

A2 Principi di Astrofisica. Coordinate Celesti

Transcription:

Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself

Discovering the Universe for Yourself

2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we see depend on latitude and time of year?

What does the universe look like from Earth? With the naked eye, we can see more than 2000 stars as well as the Milky Way.

Constellations A constellation is a region of the sky. Eighty-eight constellations fill the entire sky.

Constellations The stars in a constellation are usually not near each other; they just lie in the same direction.

Constellations

Winter and Summer Triangles

Thought Question The brightest stars in a constellation A. all belong to the same star cluster. B. all lie at about the same distance from Earth. C. may actually be quite far away from each other.

Thought Question The brightest stars in a constellation A. all belong to the same star cluster. B. all lie at about the same distance from Earth. C. may actually be quite far away from each other.

The Celestial Sphere The Ecliptic is the Sun's apparent path through the celestial sphere. The Celestial Sphere rotates following the Earth s rotation.

The Celestial Sphere North celestial pole is directly above Earth's North Pole. South celestial pole is directly above Earth's South Pole. Celestial equator is a projection of Earth's equator onto sky.

The Milky Way A band of light making a circle around the celestial sphere. What is it? Our view into the plane of our galaxy.

The Milky Way

Latitude-Longitude Latitude is the angle in degrees, North or South of the equator. Longitude is an angle East or West of the Greenwich Meridian in England, which is arbitrarily defined to be 0º longitude. For Charleston, SC: Latitude = 32 4 ʹ 7 (North) Longitude = 79 5 ʹ 6 (West)

The Local Sky (Altitude-Azimuth) An object's altitude (above horizon) and azimuth (along horizon) specify its location in your local sky. Altitude is measured in degrees above the horizon. Azimuth is measured along the horizon, in degrees East from North.

The Local Sky (Altitude-Azimuth) Meridian: line passing through zenith and connecting N and S points on horizon Zenith: the point directly overhead Horizon: all points 90 away from zenith

Celestial Coordinates

We measure the sky using angles. 2014 Pearson Education, Inc.

Angular Measurements Full circle = 360º 1º = 60ʹ (arcminutes) 1ʹ = 60ʺ (arcseconds) Insert Figure 2.8!

Thought Question The angular size of your finger at arm's length is about 1. How many arcseconds is this? A. 60 arcseconds B. 600 arcseconds C. 60 60 = 3600 arcseconds

Thought Question The angular size of your finger at arm's length is about 1. How many arcseconds is this? A. 60 arcseconds B. 600 arcseconds C. 60 60 = 3600 arcseconds

Relation Between Angular and Physical Sizes d α D D arc 2πd = circumference of circle = corresponds to 360 degrees D arc = segment of circle = corresponds to α degrees 2πd D arc = 360 α D = 2π arc αd, where α is in the angular size in degrees 360 and d is the distance. Small angle approximation: The physical size D D arc

Angular Size An object's angular size appears smaller if it is farther away.

Why do stars rise and set? Earth rotates from west to east, so stars appear to circle from east to west.

Our view from Earth: Stars near the north celestial pole are circumpolar and never set. We cannot see stars near the south celestial pole. All other stars (and Sun, Moon, planets) rise in east and set in west.

Thought Question What is the arrow pointing to in the photo below? A. the zenith B. the north celestial pole C. the celestial equator

Thought Question What is the arrow pointing to in the photo below? A. the zenith B. the north celestial pole C. the celestial equator 2014 Pearson Education, Inc.

Diurnal (Daily Motion)

Yearly Motion

Yearly Motion As the Earth revolves the Sun is projected in front of different constellations at different times of year. The path the Sun takes across the heavens is called the ecliptic. The constellations which the Sun passes through are the zodiac constellations.

Why do the constellations we see depend on latitude and time of year? They depend on latitude because your position on Earth determines which constellations remain below the horizon. They depend on time of year because Earth's orbit changes the apparent location of the Sun among the stars.

Altitude of the celestial pole = your latitude

Zenith

Zenith What is the angle between the North celestial pole and the horizon for an observer : (a) In Charleston? (b) At the North Pole? (c) At the Equator?

What have we learned? What does the universe look like from Earth? We can see over 2000 stars and the Milky Way with our naked eyes, and each position on the sky belongs to one of 88 constellations. We can specify the position of an object in the local sky by its altitude above the horizon and its azimuth along the horizon. Why do stars rise and set? Because of Earth's rotation.

What have we learned? Why do the constellations we see depend on latitude and time of year? Your location determines which constellations are hidden by Earth. The time of year determines the location of the Sun on the celestial sphere.

The Apparent Motion of Stars Animation of motion of stars

2.2 The Reason for Seasons Our goals for learning: What causes the seasons? How does the orientation of Earth's axis change with time?

Thought Question TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. 2014 Pearson Education, Inc.

Thought Question TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Hint: When it is summer in America, it is winter in Australia. 2014 Pearson Education, Inc.

Thought Question TRUE OR FALSE! Earth is closer to the Sun in summer and farther from the Sun in winter. Seasons are opposite in the N and S hemispheres, so distance cannot be the reason. The real reason for seasons involves Earth's axis tilt.

What causes the seasons? Seasons depend on how Earth's axis affects the directness of sunlight.

Axis tilt changes directness of sunlight during the year. 2014 Pearson Education, Inc.

Sun's altitude also changes with seasons. Sun's position at noon in summer: Higher altitude means more direct sunlight. Sun's position at noon in winter: Lower altitude means less direct sunlight.

Summary: The Real Reason for Seasons Earth's axis points in the same direction (to Polaris) all year round, so its orientation relative to the Sun changes as Earth orbits the Sun. Summer occurs in your hemisphere when sunlight hits it more directly; winter occurs when the sunlight is less direct. AXIS TILT is the key to the seasons; without it, we would not have seasons on Earth.

Why doesn't distance matter? Variation of Earth Sun distance is small about 3%; this small variation is overwhelmed by the effects of axis tilt. Variation in any season of each hemisphere-sun distance is even smaller!

How do we mark the progression of the seasons? We define four special points: summer (June) solstice winter (December) solstice spring (March) equinox fall (September) equinox

The Ecliptic, Equinoxes and Solstices The ecliptic intercepts the celestial equator at the vernal equinox (March 21) and the autumnal equinox (Sept 22). The northernmost point on the ecliptic is the summer solstice (June 21), and the southernmost point is the winter solstice (December 21).

We can recognize solstices and equinoxes by Sun's path across sky: Summer (June) solstice: highest path; rise and set at most extreme north of due east Winter (December) solstice: lowest path; rise and set at most extreme south of due east Equinoxes: Sun rises precisely due east and sets precisely due west.

Tropics and Circles Artic Circle: 661/2 North Latidute Antartic Circle: 661/2 South Latitude Tropic of Cancer: 231/2 North latitude Tropic of Capricorn : 231/2 South Latitude

Seasonal changes are more extreme at high latitudes. Path of the Sun on the summer solstice at the Arctic Circle

How does the orientation of Earth's axis change with time? Although the axis seems fixed on human time scales, it actually precesses over about 26,000 years. Polaris won't always be the North Star. Positions of equinoxes shift around orbit; e.g., spring equinox, once in Aries, is now in Pisces! Earth's axis precesses like the axis of a spinning top

Earth s Precession In addition to its rotation and revolution, the Earth s axis also precesses (wobbles) like a top. The angle between the ecliptic and the equator remains at 23.5, but the direction changes. The period of this precession of the equinoxes is about 26,000 years. Animation of Earth's Precession. 2014 Pearson Education, Inc.

What have we learned? What causes the seasons? The tilt of the Earth's axis causes sunlight to hit different parts of the Earth more directly during the summer and less directly during the winter. We can specify the position of an object in the local sky by its altitude above the horizon and its azimuth along the horizon. The summer and winter solstices are when the Northern Hemisphere gets its most and least direct sunlight, respectively. The spring and fall equinoxes are when both hemispheres get equally direct sunlight.

What have we learned? How does the orientation of Earth's axis change with time? The tilt remains about 23.5 (so the season pattern is not affected), but Earth has a 26,000 year precession cycle that slowly and subtly changes the orientation of Earth's axis.

2.3 The Moon, Our Constant Companion Our goals for learning: Why do we see phases of the Moon? What causes eclipses?

The Orbital Motion of the Moon

Optical and X-ray light from the Moon Image taken from Apollo 11 during its trip back to Earth X-rays from the Moon

Optical and X-ray light from the Moon Full Moon occurs when the Moon is opposite in the sky from the Sun. This is called opposition. New Moon occurs when the Moon is in the same direction as the Sun, i.e., in conjunction. Half the moon is always illuminated by the sun. Animation of Phases

Phases of the Moon

Moon Rise/Set by Phase

Thought Question It's 9 a.m. You look up in the sky and see a moon with half its face bright and half dark. What phase is it? A. first quarter B. waxing gibbous C. third quarter D. half moon

Thought Question It's 9 a.m. You look up in the sky and see a moon with half its face bright and half dark. What phase is it? A. first quarter B. waxing gibbous C. third quarter D. half moon 2014 Pearson Education, Inc.

Keeping the Same Face We always see the same face of the Moon. This occurs because the moon is locked in a synchronous orbit with the Earth. The moon performs one revolution about its spin axis for one revolution around the Earth. Animation of Moon s rotation

But what about Pink Floyd s The Dark Side of the Moon What if Pink Floyd had taken Astro 129 there would be no dark side of the moon album.

What causes eclipses? The Earth and Moon cast shadows. When either passes through the other's shadow, we have an eclipse.

Lunar Eclipse

When can lunar eclipses occur? Lunar eclipses can occur only at full moon. Lunar eclipses can be penumbral, partial, or total.

Three Types of Lunar Eclipses

When can lunar eclipses occur? For a lunar eclipse to occur the moon has to be in position E and the Earth, Moon and Sun must be on the same line.

A Total Lunar Eclipse How long does the lunar eclipse approximately last? (hint: v moon = 1km/s, D Earth = 12,800 km Explain the right to left time arrow.

Solar Eclipse

When can eclipses occur? Solar eclipses can occur only at new moon. Solar eclipses can be partial, total, or annular.

When can solar eclipses occur? For a solar eclipse to occur the moon has to be in position A and the Earth, Moon and Sun must be on the same line.

Inclination of Moons Orbit

Why don't we have an eclipse at every new and full moon? The Moon's orbit is tilted 5 to ecliptic plane. So we have about two eclipse seasons each year, with a lunar eclipse at full moon and solar eclipse at new moon.

Conditions for Eclipses The Moon s orbital plane is tilted by 5.2 from the ecliptic plane. Hence, half the time, the Moon is slightly north of the ecliptic (and half the time, it is south of the ecliptic). The shadow of one body very rarely falls on the other.

Solar Corona You only get to see this outer atmosphere (corona) of the Sun if the Sun s entire body is blocked out.

Summary: Two conditions must be met to have an eclipse: 1. It must be full moon (for a lunar eclipse) or new moon (for a solar eclipse). AND 2. The Moon must be at or near one of the two points in its orbit where it crosses the ecliptic plane (its nodes).

Predicting Eclipses For a solar eclipse to occur the line of nodes needs to be pointed towards the sun and there must be a new moon. To predict when you will see another solar eclipse, you need to know how many whole lunar months (29.53days) equal some whole number of eclipse years. lunar or synodic month: time between two successive new moons eclipse year: time for the line of nodes to complete a rotation with respect to the sun It turns out that 223 lunar months is the same length of time as 19 eclipse years. 1 Saros = 6585.3 days (~223 lunar months) Because of 1Saros = 6585.3 days you must wait three full saros intervals (54 years, 34 days) before the eclipse path comes back around to your part of Earth.

Predicting Eclipses Why are some eclipse paths wider than others? What direction does the tip of the umbra go in along the eclipse path? Why does the latitude of the path appear to vary? How fast does the tip of the umbra travel along the eclipse path?

What have we learned? Why do we see phases of the Moon? Half the Moon is lit by the Sun; half is in shadow, and its appearance to us is determined by the relative positions of Sun, Moon, and Earth. What causes eclipses? Lunar eclipse: Earth's shadow on the Moon Solar eclipse: Moon's shadow on Earth Tilt of Moon's orbit means eclipses occur during two periods each year. 2014 Pearson Education, Inc.

2.4 The Ancient Mystery of the Planets Our goals for learning: What was once so mysterious about planetary motion in our sky? Why did the ancient Greeks reject the real explanation for planetary motion?

Planets Known in Ancient Times Mercury difficult to see; always close to Sun in sky Venus very bright when visible; morning or evening "star" Mars noticeably red Jupiter very bright Saturn moderately bright

What was once so mysterious about planetary motion in our sky? Planets usually move slightly eastward from night to night relative to the stars. But sometimes they go westward relative to the stars for a few weeks: apparent retrograde motion.

We see apparent retrograde motion when we pass by a planet in its orbit. 2014 Pearson Education, Inc.

Explaining Apparent Retrograde Motion Easy for us to explain: occurs when we "lap" another planet (or when Mercury or Venus laps us). But very difficult to explain if you think that Earth is the center of the universe! In fact, ancients considered but rejected the correct explanation.

Why did the ancient Greeks reject the real explanation for planetary motion? Their inability to observe stellar parallax was a major factor.

The Greeks knew that the lack of observable parallax could mean one of two things: 1. Stars are so far away that stellar parallax is too small to notice with the naked eye. 2. Earth does not orbit the Sun; it is the center of the universe. With rare exceptions such as Aristarchus, the Greeks rejected the correct explanation (1) because they did not think the stars could be that far away. Thus, the stage was set for the long, historical showdown between Earth-centered and Sun- centered systems.

What have we learned? What was so mysterious about planetary motion in our sky? Like the Sun and Moon, planets usually drift eastward relative to the stars from night to night, but sometimes, for a few weeks or few months, a planet turns westward in its apparent retrograde motion. Why did the ancient Greeks reject the real explanation for planetary motion? Most Greeks concluded that Earth must be stationary, because they thought the stars could not be so far away as to make parallax undetectable.