ASTR 101. The Earth and the Sky. February 2, 2018

Similar documents
ASTR 101. The Earth and the Sky. September 3,2017

Sky, Celestial Sphere and Constellations

Modern Name Arabic Name Meaning

WHAT ARE THE CONSTELLATIONS

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with

2. Descriptive Astronomy ( Astronomy Without a Telescope )

The Sky. Day sky: the Sun, occasionally the Moon. Night Sky: stars, and sometimes the Moon

Constellations In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures.

Introduction to the sky

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Constellations. In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures.

2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY

CHAPTER 2 A USER'S GUIDE TO THE SKY

Using the Star Wheel Laboratory 2

6/17. Universe from Smallest to Largest:

Constellations. In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures.

CHAPTER 2 A USER'S GUIDE TO THE SKY

Guidepost. Chapter 2 A User s Guide to the Sky. Constellations Constellations (2) 8/27/2015. Outline. Outline (continued)

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

The Earth and the Sky

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

2. Descriptive Astronomy ( Astronomy Without a Telescope )

The Nature of Stars. The Nature of Stars

What do you think? 2/3/09. Mastering Astronomy Assignment 2. Constellations the 88 semi-rectangular regions that make up the sky

Length. System of Units. System International (SI) Physics Department 1/21/2018. Phys1411 Goderya 1. Topics for Today s Class

3. The International Astronomical Union established 88 constellations that represent a defined area of the sky. a. True

THE SKY. Sc. Sec. di primo grado M. Codermatz - Trieste August, 2008

Now on to scales in the. Let s change scale by TWO orders of magnitude at a time and see what happens.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Today in Space News: Space.com story. More info from NASA. Credit: NASA/JPL-Caltech/MSSS

Introduction To Modern Astronomy I: Solar System

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

1. The constellations are an ancient heritage handed down for thousands of years as ways to tell stories of mythical heroes and monsters. a.

Exploring the Night Sky

The light from the stars we see at night travel great distances to reach Earth. Other than the sun, Proxima Centauriis the next closest

PHYS 160 Astronomy Test #1 Fall 2017 Version B

12.1. The Night Sky. Earth s Motions

Astronomy 101: 9/18/2008

Knowing the Heavens. Goals: Constellations in the Sky

Astronomy 1 Introductory Astronomy Spring 2014

Marian Physics! Apparent Magnitude. Flat Prairie Publishing

Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017

Knowing the Heavens. Goals: Constellations in the Sky

Physics Lab #4: Learning Starry Night, Part 3

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016

Observing the Universe for Yourself

A2 Principi di Astrofisica. Coordinate Celesti

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Kitt Peak Nightly Observing Program

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

National Aeronautics and Space Administration. Glos. Glossary. of Astronomy. Terms. Related to Galaxies

Stars and Galaxies 1

Science Benchmark: 06 : 04 Standard 04: Stargazing universe, the light-year, speed of light Grade Benchmark Standard Page

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate

Name Class Date. For each pair of terms, explain how the meanings of the terms differ.

Section 2. Locating Astronomical Objects in the Night Sky What Do You See? What Do You See? Think About It. Investigate.

2. Descriptive Astronomy ( Astronomy Without a Telescope )

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself

Scales of Size and Time

A Sense of Scale and The Motions of Earth. The guitar player Pablo Picasso (1910)

The Cosmic Perspective, 7e (Bennett et al.) Chapter 2 Discovering the Universe for Yourself. 2.1 Multiple-Choice Questions

Kitt Peak Nightly Observing Program

Discovering the Night Sky

Discovering the Night Sky

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

ASTRONOMY. Chapter 2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY PowerPoint Image Slideshow

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Astronomy: Universe at a Glance, Ch. 1a

MAY 10, Beginning of Class: We looked into the future of the Glendale sky using Stellarium

FYI. 0 You will need to take notes this information will come in handy when going through this unit and on the cok.

Constellations Constellations of the Zodiac

Kitt Peak Nightly Observing Program

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

CELESTIAL COORDINATES

Chapter 2 Discovering the Universe for Yourself

ANNOUNCEMENTS CLASS WEBSITE UP AND

Local Coordinates. These are centered upon you, the observer.

Observing the Night Sky: Locating Objects

A User s Guide to the Sky

The sky and the celestial sphere

Across the Universe. By Gabrielle Sierra

chapter 10 questions_pictures removed.notebook September 28, 2017 Chapter 10 What We Know About the Universe Has Taken Us Thousands of Years to Learn

Summary Sheet #1 for Astronomy Main Lesson

1UNIT. The Universe. What do you remember? Key language. Content objectives

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Exploring the Night Sky: Star Charts and Stellarium

EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A USER S GUIDE TO THE SKY

Abstracts of Powerpoint Talks - newmanlib.ibri.org - Stars & Galaxies. Robert C. Newman

Early history of astronomy. Early history of astronomy. Positions in the sky. Lecture 3: The Sun & Constellations

Measuring the Sky (Spring, Night Lab)

Kitt Peak Nightly Observing Program

Kitt Peak Nightly Observing Program

Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014

Name: Class: Date: ID: A

WHAT'S UP THIS MONTH - OCTOBER 2015

Transcription:

ASTR 101 The Earth and the Sky February 2, 2018 Sky and the atmosphere Twinkling of stars The celestial sphere Constellations Star brightness and the magnitude system Naming of stars

Scattering of light and color of the sky Sun light air particle more scattering less scattering During the daytime we cannot see stars due to the glare in the atmosphere (from sunlight). When sunlight travels through the Earth s atmosphere some of the light is scattered (deflected) off air molecules. White light is a combination of different colors, blue light is scattered far more than red light.

Blue Sky during the day Sun Earth atmosphere During the day we see this scattered sunlight in the atmosphere. Since most of it is blue, a lot of blue light is seen in the atmosphere in all directions, which makes the sky look blue. Light from stars are fainter than scattered sunlight in the atmosphere, so we cannot see them (unless a star happen to be very bright)

In the outer space sky is always dark Away from the atmosphere (in outer space, on moon ) sky is always dark. It is possible to see stars and the sun at the same time.

The Sun looks red at Sunrise/Sunset Sun atmosphere Earth At sunrise and sunset, Sun is close to the horizon. Sunlight has to travel a longer distance in the atmosphere to reach us. By the time sunlight reaches ground most of the blue light has scattered off. Only red light remains. So the Sun (moon ) looks red at sunrise or sunset. If the sky is cloudy, smoggy or there is a lot of dust particles in air they may reflect the sunlight and also looks red. that part of the sky

Twinkling of Stars (stellar scintillation) When starlight travels through the atmosphere light refracts slightly (changes direction) as it passes through air layers of different densities. When the atmosphere is turbulent this refraction is not uniform or steady, it changes from moment to moment, changing the direction of starlight all the time. Since angular size of stars are extremely small (less than 0.01 ) even a tiny change in the direction is noticeable, resulting twinkling of stars. When a star is low in the sky, light has to travel a longer distance through the atmosphere. Stars closer to the horizon appear to twinkle more than stars that are overhead

Twinkling View of a star through a telescope in poor seeing conditions Twinkling is undesirable for astronomy. For astronomical observations, a steady atmosphere with good seeing is needed. Major Astronomical observatories are located in higher elevations (mountain tops).

Twinkling Planets have larger angular sizes. So a very small changes in the position of a planet in the sky is not so noticeable, they twinkle less. This is one way to distinguish a planet from a star. But in poor seeing conditions planets also twinkle, especially when they are low in the sky.

The Earth and the Sky From a location on ground, the Earth looks flat because we see only a tiny part of the vast spherical surface of the Earth At a given time and location we see half of the sky, the sky directly above that location. View of the other half is blocked by earth.

Earth spins on its axis (west to east) and goes around the sun Celestial objects (planets, stars, galaxies ) are located at different distances

Just as someone in a boat sailing forward sees unmoving [objects] going backward, on the earth, sees the unmoving stars going uniformly westward -Aryabhata, ca 500CE https://en.wikipedia.org/wiki/aryabhata On earth we do not feel its motion or rotation. Instead it appears that the whole universe (sky), sun, moon, stars goes around the Earth east to west. All celestial objects appears to be located at the same distance, like located inside a giant sphere centered at Earth.

Just as someone in a boat sailing forward sees unmoving [objects] going backward, on the earth, sees the unmoving stars going uniformly westward -Aryabhata, ca 500CE https://en.wikipedia.org/wiki/aryabhata But on earth we do not feel its motion or rotation. Instead it appears that the whole universe, sun, moon, stars goes around the Earth east to west. All celestial objects appear to be located at the same distance, like they are on a giant sphere centered at Earth.

The Celestial Sphere www.phy.olemiss.edu/~perera/animation_cele/celes_sp.gif This apparent sphere around us with all celestial objects on it, is called the Celestial Sphere. We know this is an illusion: different celestial objects are at different distances from us. it is the earth that rotates, not the sky Nevertheless considering sky as a sphere centered at earth is a useful concept for observational purposes.

The Earth and the Sky zenith W N E S nadir At a given location and time only half of the celestial sphere (sky) is visible, view of the other half is blocked by the earth. On a typical moonless clear night, about 3000 stars are visible from a dark location. Zenith: the point directly above in the sky at a given time and location. Nadir: Point in the sky directly below. It cannot be seen because it is on the other side of the earth. Celestial Meridian: The imaginary circle passing through the North and South points on the horizon and through the zenith. Celestial object has the highest elevation (altitude) when it cross the meridian.

Daily Motion of the Sky transit N E rising setting W celestial meridian S All celestial objects appears to rise in the East, moves across the sky and sets in the West. They have the highest elevation above horizon (altitude) when crossing the meridian (also called transit)

Celestial Poles and Equator North celestial pole Celestial equator South celestial pole The Earth s rotation axis extended to the sky (to the celestial sphere) meets the celestial sphere at two locations. They are called celestial poles. Celestial equator is the great circle on the celestial sphere in between celestial poles. the imaginary circle in the sky directly above the Earth's equator. 16

+ North Celestial pole Polaris the North Star Long exposure image of the north pole region Star trails over the Kennon Observatory Earth s axis always points to the same point in the sky regardless the rotation or the orbital movement. locations of celestial poles in the sky are fixed the whole sky appears to rotate about celestial poles. Since celestial poles don t move, so do any objects located at the poles. There happen to be a bright star very close to the north pole: The north star ( Polaris). It appears to stay fixed in the sky while other stars move around it.

Stars near the north celestial pole There isn t any bright star close to the South celestial pole. So there is no south star. Stars near the south celestial pole Magellanic clouds

Sky Coordinates zenith 90⁰ altitude N W 270⁰ Azimuth E 90⁰ S 180⁰ Simplest way to give the location of a celestial object in the sky is to give its apparent position in the sky Altitude: vertical angular elevation above the horizon Azimuth: direction from North to the object: angle measured along the horizon towards the east along the horizon. But the apparent position of a celestial object changes with time and location. Not the best way to identify an object.

Logitude and Latitude Position of a place on the Earth can be given by its longitude and latitude. Latitude: angular distance from the equator. Longitude: angular separation of the meridian through the location and the reference meridian trough Greenwich. A similar mechanism can be used to give the position of a celestial object on the celestial sphere (sky).

Right ascension and Declination N celestial north pole Vernal Equinox (first point of Aries) declination celestial equator right ascension reference median Position of an object on the celestial sphere can be specified similarly. When refer to locations in the sky they are called declination and right ascension. Declination: angular distance to an object from the celestial equator. Right ascension: angle between the celestial meridian through an object and a reference median.

Constellations Southern sky this evening form a dark location ((8.00PM, Oxford MS). On a moonless clear night about 3000 stars are visible

Ancient observers imagined groups of brighter stars as patterns, called constellations. Related to mythological characters, heroes, animals, royalty whatever important or fascinated them.

Many ancient cultures saw patterns in the sky and established their own constellations and star lore based on their culture and mythology. Most northern constellations dates back to Babylonians times, 4-5 millennia ago, Later Greeks adopted them and interpreted according to their mythology

Western (Greek) Ancient Egyptian Ancient Chinese Constellations in the same part of the sky according to Greeks,Egyptians and Chinese From the planetarium software : Stellarium Available from (free): www.stellarium.org Also demo version of Skygazer planetarium software is available form http://www.carinasoft.com/downloads.html#vdemoanchor

Examples of few constellation figures All above are Zodiac constellations the narrow band in the sky where sun, moon and planets are visible. Their origin dates backs to ancient Sumerians and Babylonian times

Modern Constellations constellation boundaries 16 th -19 th century astronomers added many new constellations to fill in the gaps between classical constellations and cover uncharted regions of the southern sky. In 1922, the International Astronomical Union (IAU) adopted 88 constellations as internationally accepted constellations. That included the 48 classical constellations, 32 southern constellations and few other constellations formed since the 16th century. 88 constellations divide the sky in to 88 regions according to boundaries defined by the IAU.

distances to stars in the Big Dipper. Constellations are not physical objects: Group of stars just happened to be in the same direction in the sky. No physical relationship between stars in a constellation distances between stars could be hundreds of light years

Antique star maps/atlases Albrecht Dürer, 1515, Germany Ancient star maps were vividly decorated with constellation figures Stars were identified from their locations in the constellations. Today constellations are used as mnemonics, an easy way to remember and identify different regions of the sky. They play less important role in professional astronomy. Instead star catalogs and databases play a major role. Alexander Jamieson, early 19 th Century One of the largest catalog, Hubble guide star catalog has over 945 million stars down to magnitude 21.

Asterisms Sickle (in Leo) Delphinus Tea pot (in Sagittarius) Orion s belt W in Cassiopeia A distinctive pattern of stars, but often not an official constellation. examples: Big dipper, Tea pot, belt of Orion, Pleiades, W in Cassiopeia, Delphinus, southern cross

Star brightness Star brightness: magnitude system Stars have different apparent brightness. In astronomy apparent brightness of a star (or other celestial object) is given by a number called the magnitude. It is a backward scale, smaller the magnitude number brighter the star and vice versa. Faintest stars can be seen with the naked eye are about magnitude 6 700 600 It is a nonlinear scale: For each magnitude difference, actual brightness changes by a factor of about 2.5 500 400 300 200 100 2.5 x brighter 2.5 x brighter magnitude 2 magnitude 3 magnitude 4 2.5 x2.5 = 6.25 x brighter 0 0 1 2 3 4 5 6 7 Star magnitude 31

5 magnitudes difference corresponds to 100 times in actual brightness When the object is too bright (like Venus, Sun, Moon) its magnitude could be negative. Examples: Faintest object (galaxy) in Hubble extreme deep field: magnitude 31 Faintest object observable with a 6 inch aperture telescope: 13 Faintest object observable with a typical binocular magnitude: 9 Faintest stars visible to naked eye: magnitude 6 North star 2 Mars these days 1.1, faintest stars visible near the physics department: magnitude < 1 Betelgeuse: 0.4 Vega: magnitude 0 reference star Sirius (brightest star in the sky): -1.3 Venus these days: 4.7, Full Moon -13 Sun -27 brighter 32

Hipparchus magnitude system The reason for this seemingly awkward system is in its history. Greek astronomer Hipparchus prepared a detailed star catalog in 129 BCE. It was the most accurate star catalog of the antiquity. He wanted to record the brightness of a star as well as its position in the sky He called the brightest stars in the sky 1 st class stars the next brightest stars 2 nd class stars, and so on until the 6 th class, which were the faintest stars he could see. Hipparchus star classification became popular with later astronomers and they kept using his system of 1 st to 6 th (magnitude) for almost two millennia. With a telescope stars fainter than 6 th magnitude are visible so after the invention of the telescope in 17 th century, there was a need to extend the magnitude scale. 19 th century astronomers refined and quantified the magnitude system to the modern form, while keeping most of the features of Hipparchus original backward system. 33

Response of the human eye is not linear, but logarithmic actual brightness Thus the star brightness classification scale which was originally based on observations by eye has this nonlinear logarithmic nature

Naming of Stars A page from the star catalog in Ptolemy s Almagest (2 nd century CE) Most bright stars have proper names, like Polaris, Sirius, Rigel or Antares. Most star names are of Arabic origin few are Greek During the middle ages Arabic astronomers adopted Greek constellations. Greek astronomers identified stars by their location in constellations. Arabic astronomers followed the same in Arabic. 35

Naming of Stars When the Arabic texts were translated to Latin in late Medieval period, those descriptions of star positions in Arabic were directly passed down to the west: Often in garbled Arabic with translation errors and misplaced meanings. and became the star names in use today. Betelgeuse: armpit (of Orion in Arabic) Rigel: left foot (of Orion) Deneb: tail of Swan Denebola: Lions tail A page from Johann Bayer s star atlas, Uranometria (1603 CA). 36

Naming of Stars In 1603, the German astronomer Johann Bayer produced a star atlas, Uranometria. There he assigned each star in a constellation a Greek letter, approximately in the order of their apparent brightness. Bayer naming scheme is still in use for most of the bright stars ex: alpha Centauri: star a in the constellation Centaurus If the constellation has more than 24 stars, Greek letters followed by upper and lower case Latin letters. a, b, g... w, A, b, c, z In addition index numbers from many other catalogs are used - HD, SAO same star: Betelgeuse, α Orionis, 58 Orionis, HD39801, SAO 113271, HIP27989 37

Motion of stars and shape of constellations over time. A star moving 100 km/s travels 3.2x10 9 km in a year 100 ly=9.5x10 14 km Stars appear to have fixed positions in the sky while whole sky rotates with them. Constellation patterns have not changed over millennia Hence the name fixed stars given by ancient astronomers 0.7 Stars do move in space with considerable speeds (e.g. the Sun moves 120 km/s in the Milky way) But distances to them are so large, change in their angular positions too small for us to see. A star moving 100 km/s travels 3.2 billion km in a year If it is 100 light years (950 trillion km) away its position in the sky changes only by 0.7 arc-second.

100,000 years ago now in 100,000 years Change of the shape of Big Dipper due to motion of stars. Shape of the Big Dipper over time Animation: www.phy.olemiss.edu/~perera/animations/um.gif But over long time spans (many thousands of years), there could be noticeable changes.

Review Questions What would be the color of the sky few thousand kilometers above the Earth. It is often said that stars twinkle but planets won t. Do you agree? On hot summer days often you see the view closer to the surface of a paved road blurry and wavy. Why? Twinkling is not desirable for astronomical observations since it blurs astronomical images. What could astronomers do to overcome that? Why giving the location of altitude and azimuth is not the best way to specify the location of an object in the sky. What is the declination of a celestial object if it is located (a) on the celestial equator (b) on the North celestial pole (c) on the South celestial pole (d) if sometimes it is directly overhead (at the Zenith) from Oxford MS. Why does the North Star appear to be fixed in the sky while all other object move? Why haven t constellation patters changed since they have been established 3-4 thousand years ago. How many constellation are there according to modern convention? Name the three brightest celestial objects in the night sky? Why isn t the star magnitude scale linear? What magnitude are the faintest visible stars to naked eye? Why are most star names Arabic while constellation names are Latin (or Greek) origin? 40