GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

Similar documents
The GERDA Experiment:

The GERmanium Detector Array

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up

Search for 0νββ-decay with GERDA Phase II

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

Status of the GERDA experiment

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay

The GERDA Neutrinoless double beta decay experiment

arxiv: v1 [nucl-ex] 20 Dec 2008

Background Free Search for 0 Decay of 76Ge with GERDA

Two Neutrino Double Beta (2νββ) Decays into Excited States

Neutrinoless Double Beta Decay for Particle Physicists

STATUS OF THE CALIBRATION

Double Beta Present Activities in Europe

Prospects for kev-dm searches with the GERDA experiment

GERDA & the future of 76 Ge-based experiments

-> to worldwide experiments searching for neutrinoless double beta decay

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

The search for neutrino-less double beta decay with LNGS: status and perspectives

Search for Neutrinoless Double Beta Decay in the GERDA Experiment

First results on neutrinoless double beta decay of 82 Se with CUPID-0

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

GERDA Status and Perspectives

Yoann KERMAÏDIC PSeGe workshop

Results from GERDA Phase I and status of the upgrade to Phase II. Stefan Schönert (TU München) on behalf of the GERDA collabora;on

a step forward exploring the inverted hierarchy region of the neutrino mass

Investigation and development of the suppression methods of the 42 K background in LArGe

Status of the CUORE experiment at Gran Sasso

Phase II upgrade of the Gerda experiment for the search of neutrinoless double beta decay

J. Gasparro, M. Hult, G. Marissens. A.Di Vacri, M. Junker, M. Laubenstein, C. Tomei, L. Pandola

How can we search for double beta decay? Carter Hall University of Maryland

Status of Cuore experiment and last results from Cuoricino

The GERDA Phase II detector assembly

Search for Neutrinoless Double- Beta Decay with CUORE

GERDA Phase II: status and prospects

New results of CUORICINO on the way to CUORE

Wavelength Shifting Reflector Foils for Liquid Ar Scintillation Light

Results on neutrinoless double beta decay of 76 Ge from GERDA Phase I

Status and Perspectives of the COBRA-Experiment

Contents. General Introduction Low background activities Pixel activities Summary and Outlook. Kai Zuber

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

Neutron Activation of 76Ge

AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters

GERDA Phase II detectors: behind the production and characterisation at low background conditions

Neutrinoless Double-Beta Decay

DarkSide-50: performance and results from the first atmospheric argon run

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

Results from EXO 200. Journal of Physics: Conference Series. Related content PAPER OPEN ACCESS

the first prototype for a scintillating bolometer double beta decay experiment.

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

LUCIFER: Neutrinoless Double Beta Decay search with scintillating bolometers

Background by Neutron Activation in GERDA

Status of the CUORE and CUORE-0 experiments at Gran Sasso

PROJECT STATUS AND PERSPECTIVES

Shielding Strategies. Karl Tasso Knöpfle MPI Kernphysik, Heidelberg

Results from 730 kg days of the CRESST-II Dark Matter Search

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

K. Zuber, Uni. Sussex NNR 05, Osaka Status of COBRA

Direct dark matter search using liquid noble gases

Excited State Transitions in Double Beta Decay: A brief Review

cryogenic calorimeter with particle identification for double beta decay search

Studies of the XENON100 Electromagnetic Background

Neutrino Masses and Mixing

The CUORE Detector: New Strategies

A multipurpose detector for low energy

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

The energy calibration system of the CUORE double beta decay bolometric experiment

K. Zuber, Techn. Univ. Dresden Erlangen, 4. June Status and perspectives of the COBRA double beta decay experiment

Institute for Nuclear Research, MSP Kyiv, Ukraine. Dipartimento di Fisica, Università di Roma Tor Vergata, I Rome, Italy

arxiv: v1 [physics.ins-det] 1 Aug 2017

arxiv: v1 [nucl-ex] 14 May 2013

Coincidence measurements for Gerda Phase II

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay

K. Zuber, University of Sussex TU Dresden, 15. Oct Double beta decay

R. MacLellan on behalf of the EXO Collaboration Department of Physics & Astronomy, University of Alabama, Tuscaloosa AL USA

Is the Neutrino its Own Antiparticle?

E.Fiorini, Neutrino 2004 Paris, June 17, For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear events

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

The Majorana Neutrinoless Double-Beta Decay Experiment

Status of the EXO double beta decay project. Andreas Piepke for the EXO Collaboration University of Alabama

The Double Chooz reactor neutrino experiment

PoS(EMC2006)007. Neutrino: Dirac or Majorana? Ettore Fiorini 1

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

Status of the CUORE and CUORE-0 Experiments at Gran Sasso

arxiv: v2 [physics.ins-det] 10 Apr 2014

FIRST RESULT FROM KamLAND-Zen Double Beta Decay with 136 Xe

Improvement of the GERDA Ge Detectors Energy Resolution by an Optimized Digital Signal Processing

Outline What is ββ and why study it? Assumes you heard previous talks. General Experimental Issues The New Proposals

STATUS OF THE CUORE0 AND CUORE EXPERIMENTS

Majorana Double Beta Decay Search Project (Majorana Demonstrator)

Transcription:

GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09

Neutrinos mixing matrix Uij characterized by: MOTIVATIONS Three mixing angles θ 12 θ 23 θ 13 One Dirac phase δ Two Majorana phases φ 2 φ 3 θ 12 θ 23 measured limits on θ 13 Mass scale m 2 12 m2 13 Normal hierarchy m 3 >m 2 ~m 1 Inverted hierarchy m 2 ~m 1 >m 3 Next challenges in neutrino physics: Majorana or Dirac nature of the particle Mass hierarchy Absolute mass scale

NEUTRINOLESS DOUBLE BETA DECAY Second order process detectable if the first order process is energetically forbidden Candidate Q(MeV) Abund(%) n n 2νββ decay 0νββ decay p e - ν ν e - p (Z,A) (Z+2,A)+ 2e - + 2ν (Z,A) (Z+2,A)+ 2e - n n p e - e - p T 1/2 ~10 21 y T 1/2 >10 25 y 0ν mode forbidden in the SM L =2 ν = ν (Majorana particle) Possible only for m ν 0 76 Ge 76 Se + 2e - Q ββ (76Ge)=2039keV

2νββ in 76 Ge: T 1/2 ~ 1.5 ±0.1 10 21 y EXPERIMENTAL SIGNATURE a.u. Peak at Q ββ = E e1 + E e2-2m e 2 electrons from the vertex + daughter isotope 1 2 2 G( Q, Z) M nucl < m > τ = ββ ee Nucl. matrix element Phase space Q 5 ββ Effective Majorana mass 2νββ ROI 0νββ (T 1 +T 2 )/Q ββ Heidelberg-Moscow experiment: 5 enriched Ge p-type crystals background index ~0.1 cts/(kev kg y) 71.7 kg y T 1/2 =(0.69 4.18) 10 25 y Claim of a signal by part of the collaboration Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198.

EXPERIMENTAL REQUIREMENTS Large amount of 0νββ isotopes Good energy resolution Extremely low background

High Q-value GERDA 76 Ge detectors for 0νββ Very pure detectors natural radioactivity contribution reduced Large target mass Enrichment in 76 Ge (86%) Very good energy resolution E/E (Q ββ ) ~ 0.2% LAr as cooling and shielding Surrounding materials minimized Plastic scintillator (muon veto) Water tank (r=5.0m h=9.0m) n shield Cherenkov veto Cryostat (r=2.1m h=5m) cooling medium passive/active shield Up to 16 strings Detector loaded from top of the thank through a clean room area

LOCK Cleanroom Steel frame LNGS ~3400 mwe

Jagellonian University - Cracow, Poland Technische Universität - Dresden, Germany Joint Institute for Nuclear Research - Dubna, Russia Institute for Reference Materials and Measurements - Geel, Belgium Max-Planck-Institut für Kernphysik - Heidelberg, Germany Russian Academy of Sciences - Moscow, Russia Institute for Theoretical and Experimental Physics - Moscow, Russia Russian Research Center Kurchatov Insitute - Moscow, Russia Gran Sasso National Laboratory - L'Aquila, Italy Universita Milano Bicocca - Milano, Italy Max-Planck-Institut für Physik - München, Italy Universita di Padova - Padova, Italy Eberhard Karls University - Tübingen, Germany University of Zürich - Zürich, Switzerland 14 institutions

PHASE I p-type coaxial detectors 5 He-Mo detectors 3 IGEX Refurbished by Canberra and tested in LAr Total 17.9 kg enriched Ge Exposure ~ 30 kg y bck: 0.01 cts/(kev kg y) T 1/2 2 10 25 y 15 10 Check claim of Hd-Mo 5 0 PHASE I 0 50 100

Cryotank (Mar. 08) Water tank (Aug. 08)

PHASE II PHASE II : add new p/n-type coaxial detector 86% enrichment 37.5 kg already available segmentation? unsegmented Broad Energy det? (R&D on ongoing) Exposure ~ 100 kg y bck: 0.001 cts/(kev kg y) T 1/2 15 10 25 y PHASE II PHASE I Single and Multi-site event discrimination: segmented detectors point contact BEGe detector Effective bkg reduction

PRESENT STATUS Installation of the clean room (May 09) Mounting of the muon veto PMTs (Aug 09) Cryostat filling (Sep 09) Temporary commissioning lock for Phase I completed by the end of the year Phase I detector reprocessed and tested in LAr FWHM (1.33MeV) ~ 2.5 kev leakage current stable Phase II R&D ongoing

228 Th calibration source Sufficient number of lines Energy calibration in the region of interest (SEP 208 Tl) Pulse shape discrimination 228Th α emitter E (α) ~ 6.5 MeV E max (α) = 8.8 MeV neutrons produced through (α,n) with the ceramic pallet of the commercial sources Neutron fluxes for different materials Neutron Rate = 3.8 10-2 n/(s kbq) E mean = 1.45 MeV MC simulations: 350 cm LAr attenuation 6.7 10 7 neutrons considered Mean interaction probability ~ 4 10-4 1.0 10-5 cts/(kev kg y kbq) 6.0 10-4 cts/(kev kg y) @ 3 20kBq

New low-n rate source development Aim: reduction of the neutron flux through the development of a new setup Gold: no oxidation Threshold for (α,n) ~ 9.94 MeV Collaboration with PSI 200 o C 750 o C Neutron flux ~ 5.0 10-4 n/(s kbq) E mean = 2.5 MeV MC simulations: B = 8.6 10-8 cts/(kg kev y kbq) B = 5.1 10-6 cts/(kev kg y) @ 3 20kBq φ ~ 0.01 n/s @ 20kBq

RESULTS Equilibrium broken due to Rn gas emanation during the procedure Relative peak height ratio: 212 Pb/ 224 Ra 10.6 Before the treatment 1h after the treatment 2 months after 212 Pb/ 224 Ra = 10.7 ± 0.2 212 Pb/ 224 Ra = 3.0 ± 0.1 212 Pb/ 224 Ra = 10.4 ± 0.3 Equilibrium restored in few weeks! 3 He neutron counter @ LNGS (28d livetime) φ: (0.017 +/ - 0.003) n/s @ 20kBq Good agreement with the predictions! OK FOR PHASE II!

CONCLUSIONS Construction is ongoing Phase I : 8 diodes (~18 kg) refurbished and ready Complete installation and start apparatus commissioning by the end of 2009 Expected bkg level ~ 0.01 cts/(kev kg y) Parallel R&D for Phase II (Goal: 0.001 cts/(kev kg y)

Sensitivity of 0νββ decay experiments Half life T 1/ 2 ~ a ε m t E B M nucl m active target mass B background rate a enrichment of isotopes (<1) ε signal detection efficiency (<1) E energy resolution t measuring time M nuclear matrix elements

In order to discriminate between normal and inverted hierarchy, we need an experiment with sensitivity down to ~10mV scale