MAGNETIC EFFECTS IN SIMULATIONS OF STRUCTURAL TRANSFORMATIONS BELOW AND ABOVE THE MAGNETIC TRANSITION TEMPERATURE:

Similar documents
Igor A. Abrikosov Theoretical Physics, Department of Physics, Chemistry and Biology, Linköping University, Sweden

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Orbital polarization in correlated electron systems. A. Lichtenstein University of Hamburg

= (1) Correlations in 2D electron gas at arbitrary temperature and spin polarizations. Abstract. n and n )/n. We will. n ( n

Modeling of spin-polarized transport in semiconductor nanostructures

Quantum Simulation: Solving Schrödinger Equation on a Quantum Computer

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions.

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

Mihai V. Putz: Undergraduate Structural Physical Chemistry Course, Lecture 6 1

Quantum Annealing for Heisenberg Spin Chains

Semiconductors a brief introduction

Solids - types. correlates with bonding energy

Molecular Mechanisms of Gas Diffusion in CO 2 Hydrates

THE FRACTAL TECHNIQUES APPLIED IN NUMERICAL ITERATIVE METHODS FRAME

Chapter 5 Vibrational Motion

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

Hydrogen (atoms, molecules) in external fields. Static electric and magnetic fields Oscyllating electromagnetic fields

MIT Department of Chemistry 5.74, Spring 2005: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions.

Exact Solutions of the Generalized Benjamin Equation and (3 + 1)- Dimensional Gkp Equation by the Extended Tanh Method

SHANGHAI JIAO TONG UNIVERSITY LECTURE

Electrical Conduction in Narrow Energy Bands

ANALYSIS OF DAMPING EFFECT ON BEAM VIBRATION

REPRESENTING MARKOV CHAINS WITH TRANSITION DIAGRAMS

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples:

Positron annihilation on atomic core electrons + positive ions

Formation of A Supergain Array and Its Application in Radar

Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle

Analytical Solution Describing the Periodicity of the Elements in the Periodic System

Akihiko Sekine. Institute for Materials Research, Tohoku University

1 Adiabatic and diabatic representations

A flat histogram stochastic growth algorithm

Electric dipole moment of nuclei

Solution of Quantum Anharmonic Oscillator with Quartic Perturbation

Application of Homotopy Perturbation Method for the Large Angle period of Nonlinear Oscillator

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

ON INTRINSIC LOCALIZED MODES, BREATHERS AND QUODONS. Helsinki, Accelerator Laboratory, Friday, June 12, 2015.

COURSE INTRODUCTION: WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π 2 SECONDS AFTER IT IS TOSSED IN?

Regression with an Evaporating Logarithmic Trend

Order- N Green's Function Technique for Local Environment Effects in Alloys

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

Periodic systems: Concepts

Frank Laboratory of Neutron Physics, JINR, Dubna, Russia. Institute of Heavy Ion Physics, Peking University, Beijing, P.R. China. 1.

Solution of Differential Equation from the Transform Technique

A new statistical-dynamical downscaling technique

Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls

Received 4 January 2011; revised 7 April 2011; accepted 24 June 2011

reactions / Fission Classification of nuclear reactions

Physics 7440, Solutions to Problem Set # 8

IS CLASSICAL THERMODYNAMICS THE UNIQUE PHYSICAL THEORY WHICH WILL NEVER BE REFUTED?

Computational Materials Physics

Free electron gas. Nearly free electron model. Tight-binding model. Semiconductors

Intrinsic Carrier Concentration

Lectures on Stochastic System Analysis and Bayesian Updating

EFFICIENT HIGHER ORDER ZIG-ZAG THEORY FOR COUPLED MAGNETO-ELECTRO-ELASTIC COMPOSITE LAMINATES

Triatomics-in-molecules method applied to helium cluster cations

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations

A Brief Introduction to the Physical Basis for Electron Spin Resonance

Elastic Plastic Behavior of Geomaterials: Modeling and Simulation Issues

arxiv: v1 [math-ph] 5 Jul 2017

Physics Oct Reading

Continuum states from time-dependent density functional theory

PHYS-3301 Lecture 9. CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I. 5.3: Electron Scattering. Bohr s Quantization Condition

1. Szabo & Ostlund: 2.1, 2.2, 2.4, 2.5, 2.7. These problems are fairly straightforward and I will not discuss them here.

5.80 Small-Molecule Spectroscopy and Dynamics

Dynamic Response of Second Order Mechanical Systems with Viscous Dissipation forces

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

International Journal of Advance Engineering and Research Development APPLICATION OF MONTE CARLO METHOD FOR DEVICES SIMULATION

Supplementary Information

1. pn junction under bias 2. I-Vcharacteristics

Phys. 201 Mathematical Physics 1 Dr. Nidal M. Ershaidat Doc. 12

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

Landau-Silin Kinetic Equation in the Theory. of Normal Fermi Liquid

Repetition: Micro Hardness

LDA+DMFT study for LiV 2 O 4 at T 0

Helium-like Ions Below. the N=2-9 Hydrogenic Thresholds

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

Lanczos-Haydock Recursion

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m "2 + V ( r,t) (1.

arxiv:cond-mat/ v1 [cond-mat.str-el] 17 Feb 2003

The Temperature Dependence of the Density of States in Semiconductors

Dissipative two-electron transfer: A numerical renormalization group study

1. Hydrogen Atom: 3p State

A Unified Mathematical Framework for Intermediate Band Solar Cells

The properties of nonlinear excitations and verification of validity of theory of energy transport in the protein molecules

Some New Iterative Methods for Solving Nonlinear Equations

Physics of n-a. Ulrich Mosel

Coherent control of Rydberg atoms

First-principles modeling: The evolution of the field from Walter Kohn s seminal work to today s computer-aided materials design

arxiv: v1 [hep-ph] 22 Jul 2011

Size, shape and temperature effect on nanomaterials

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Nonequilibrium theory of exciton-polariton condensates. Michiel Wouters

Identification of damping parameters for particle damper from the response of SDOF harmonically forced linear oscillator

Propagation of Cathode-Directed Streamer Discharges in Air

SOME RELATIONS ON HERMITE MATRIX POLYNOMIALS. Levent Kargin and Veli Kurt

ECE606: Solid State Devices Lecture 9 Recombination Processes and Rates

3. Magnetism. p e ca (3.3) H = B = (0, 0, B), p p e c A( r), (3.1) A = 1 2 ( B r) = 1 ( By, Bx, 0) = p 2 e (

5.74 TIME-DEPENDENT QUANTUM MECHANICS

A comparative study of a system of Lotka-Voltera type of PDEs through perturbation methods

Transcription:

MAGNETIC EFFECTS IN SIMULATIONS OF STRUCTURAL TRANSFORMATIONS BELOW AND ABOVE THE MAGNETIC TRANSITION TEMPERATURE: Navigatig i space o atoms ad spis I. A. Abrikosov Departmet o Physics, Chemistry ad Biology IFM, Liköpig Uiversity, Swede

IN COLLABORATION WITH : M. Ekholm, B. Allig, T. Marte, P. Steeteg, Departmet o Physics, Chemistry, ad Biology IFM, Liköpig Uiversity, Swede A. V. Ruba, Applied Materials Physics, The Royal Istitute o Techology, Swede

Liköpig, Swede 60 Uppsala The Swedish Strategic Research Ceter i Materials Sciece or Naoscale Surace Lud Egieerig Lars Hultma Lars Hultma; 163 August 2007

Igor Abrikosov Bo Serelius Theoretical Physics Igor Abrikosov, Proessor Ab iitio electroic structure theory Materials simulatios Mesoscopic physics, semicoductor structures i the quatum regime, trasport ad chaos Uderstadig o udametal molecular iteractios Dyamical simulatios o metallic heterostructures Eergy localizatio i descrete systems No-liear dyamics o aharmoic lattices Karl-Fredrik Berggre Magus Johasso Sergei Simak Leoid Pourovskii Iria Yakimeko Ferec Tasadi Peter Müger

Studets ad Postdoctoral Fellows totally 46 PhDs rom Theoretical Physics: Has Lid Marcus Ekholm, SeRC Olga Vekilova Tobias Marte Postdoc Olle Hellma Peter Steeteg Pro. Eyvaz Isaev, ALVA lector Björ Allig Assistat Proessor Dr. Weie Olovsso, Bitr. Lektror&applicatioexpert

CONTENTS : Predictive simulatios: what is it? Coiguratioal thermodyamics o alloys: methodology overview: Koh-Sham descriptio Geeralized Isig descriptio Coiguratioal thermodyamics o magetic alloys Iluece o magetic state o chemical order-disorder trasitio temperature i Fe-Ni permalloy Coclusios

Alloys G E + PV TS Accelerator o protos Coolig media Fuel Target

Gibbs ree eergy: G E + PV TS Equilibrium i alloys: Chemical potetial μ I G I T. P, J I Gibbs-Duhem relatio SdT VdP + I I dμ I 0

Kutsso et al. J. Appl. Phys. 108, 044312 2010

Ti x Cr y Al z N: decompositio patters T0K T1300 K

Ti 0.31 Al 0.62 Cr 0.07 coatig: DSC aalysis ad hardess H. Lid, R. Forse, B. Allig, N. Ghaoor, F. Tasadi, M. Johasso, IAA, M. Ode, submitted

Coiguratioal thermodyamics o alloys rom irst-priciples F k B T l Z Z s exp The characteristic time or the electroic degree o reedom i d-metals is give by itersite hoppig, related to the d-bad width, W d, as W d ~10-15 s. The magetic degree o reedom, related to the trasverse excitatios o magetic momet, has characteristic time proportioal to the iverse spi-wave requecy ~ 10-13 s. For the lattice vibratios phoos the characteristic time is proportioal to the iverse o the Debye requecy, which is the order o ~ 10-12 s. Thereore, we cosider F s as the costraied ree eergy o the alloy with a give atomic coiguratio s: F k T l exp[ E A. V. Ruba ad I. A. Abrikosov, Rep. Prog. Phys. 71, 046501 2008. s B p,, F E kt m e s s p, m, e / k B T ]

LDA, GGA, etc. VASP, Wie2k,CASTEP, ABINIT, KKR, etc. 2 +V KS x 1,R 1,R 2,...,R N 2m I φ i x 1,R 1,R 2,...,R N e I ε i φ i x 1,R 1,R 2,...,R N I h2 Supercell, CPA, etc. P. E. A. Turchi, I. A. Abrikosov, et al., CALPHAD 31, 4 2007.

Ordered compouds

Solutio phases: supercell method

Cluster expasio o the total eergy Φ Φ Φ Φ Φ tot tot i i V E E V F F F F F. Tasadi, IAA, ad I. Katardjiev, Appl. Phys. Lett. 94, 151911 2009. Special quasiradom structure method [A. Zuger et al., Phys. Rev. Lett. 65, 353 1990] 0 0 0 0 Φ Φ V V B x Al 1-x N A. V. Ruba ad I. A. Abrikosov, Rep. Prog. Phys. 71, 046501 2008.

Solutio phases: coheret potetial

c + 1-c

Gree s uctios

[ ] -1 [mz-bk,z] 2

A B c 1 c A A B B B B B A B A A B A B B A B A A A B B A A Coheret Potetial Approximatio CPA 1 ge V r 1 [ me ~ r 3 Bk, E ] d k ~ UL BZ ULBZ ~ ge ; me ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ m ~ A g E 1+ ge ~ [ m 1 ge B E me ~ ] A B ~ A B g ~ E cg A B E + 1 c g E

Locally Sel-cosistet Gree s Fucto method LSGF I. A. Abrikosov et al., Phys. Rev. Lett. 76, 4203 1996

g ii E ij g ~ ii E + g~ Em j LIZ [ ~ j j ] ji E m E g E

g ll E lj g ~ ll E + g~ Em j LIZ [ ~ j j ] jl E m E g E

Locally Sel-cosistet Gree s Fuctio method LSGF 1 r ge ~ UL V BZ ULBZ [ ] 1 me ~ 3 Sk d k r g i E ge ~ + [ ~ ] m i E g i E, i SC geme ~ g ii E 1 ge ~ g i E N SC i SC ij g~ ii E + g~ Em j LIZ I. A. Abrikosov et al., Phys. Rev. Lett. 76, 4203 1996 [ ~ j j ] E m E g ji E, i SC

Koh-Sham Hamiltoia + + + + occ r r V V V V r V r V H r r H i i Mad XC EXT H KS KS KS i i i KS φ φ φ ε φ *,...R R, R,,...R R, R, ] [ ] [ ] [ ],...R R, R, [ ],...R R, R, [ 2 1,...R R, R,,...R R, R, M 2 1 M 2 1 M 2 1 M 2 1 2 M 2 1 M 2 1 [] ], [ E E ] r - r r r 2 1 r[ r r r r T E XC II 3 3 3 E V d d V d EXT Φ + + + + r r r r r r r r r Geeralized Isig Hamiltoia tot i i E V Φ Φ A. V. Ruba ad I. A. Abrikosov, Rep. Prog. Phys. 71, 046501 2008.

..., 2 1 0 + + s j i s tot V V V E mi 2... } { : L.S.M by oud are the I m V m E V N N str pot

Metal to isulator trasitio i Ti 1-x Al x N B. Allig, A. V. Ruba, A. Karimi, O.Peil, L. Hultma, ad I. A. Abrikosov, Phys. Rev. B 75, 045123 2007

B. Allig, A. V. Ruba, A. Karimi, L. Hultma, ad IAA, Phys. Rev. B 83, 104203 2011

B. Allig, A. V. Ruba, A. Karimi, L. Hultma, ad IAA, Phys. Rev. B 83, 104203 2011

The Mote Carlo method Calculatios o averages at temperature T: Z T k E A A s B s s exp Create the Marcov chai o coiguratios: T k E Z P B s s exp 1 Balace at the equilibrium state: T k E s s W T k E s s W B s B s ' exp ' 'exp E Δ 1 0 exp 0 0 > Δ > Δ Δ r r T k E E E B Atoms exchaged ΔE

i

Pd H J ij s i s j

Cluster expasio o the total eergy Φ Φ Φ Φ Φ tot tot i i J E E J F F F F B. Allig, T. Marte, ad IAA, Phys. Rev. B 82, 184430 2010 Special quasiradom structure method or paramagetic systems 0 0 0 0 Φ Φ J J PM CrN

Disordered Magetism Disordered Local Momet Model

M. Ekholm,, IAA, Phys. Rev. Lett. 105, 167208 2010

M. Ekholm,, IAA, Phys. Rev. Lett. 105, 167208 2010

CONCLUSIONS : Eiciet methodologies have bee developed or the treatmet o coiguratioal disorder i solids Magetic state ilueces strogly iteratomic chemical iteractios Cosequetly, magetism has to be treated accurately upo simulatios o materials properties