Dust processing of radiation in galaxies

Similar documents
SED models of AGN. R. Siebenmorgen and A. Efstathiou

Dusty star-forming galaxies at high redshift (part 5)

Dust in dwarf galaxies: The case of NGC 4214

Dust. The four letter word in astrophysics. Interstellar Emission

Andromeda in all colours

GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING

Components of Galaxies Gas The Importance of Gas

Interstellar Dust and Extinction

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

The relation between cold dust and star formation in nearby galaxies

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Lecture 5. Interstellar Dust: Optical Properties

Star formation history in high redshift radio galaxies

Spectral Energy Distributions as probes of star formation in the distant Universe

RADIATIVE TANSFER MODELING OF AGN DUSTY TORUS AS CLUMPY TWO-PHASE MEDIUM

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4

Dust radiative transfer modelling. Maarten Baes

Geometrically Thick Dust Layer in Edge-on Galaxies

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Gas 1: Molecular clouds

Dust. Interstellar Emission. The four letter word in astrophysics Scattered in S&G mostly pgs , MBW

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

Polycyclic Aromatic Hydrocarbon from the Magellanic Clouds

8: Composition and Physical state of Interstellar Dust

Stars, Galaxies & the Universe Lecture Outline

A TALE OF TWO MONSTERS: EMBEDDED AGN IN NGC6418 AND IRAS

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Gaia Revue des Exigences préliminaires 1

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Sunrise: Patrik Jonsson. Panchromatic SED Models of Simulated Galaxies. Lecture 2: Working with Sunrise. Harvard-Smithsonian Center for Astrophysics

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star

TEMA 6. Continuum Emission

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423

Lec 3. Radiative Processes and HII Regions

The Interstellar Medium

Physics 224 The Interstellar Medium

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

The Classification of Galaxies

IRS Spectroscopy of z~2 Galaxies

Survey of dusty AGNs based on the mid-infrared all-sky survey catalog. Shinki Oyabu (Nagoya University) & MSAGN team

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium:

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

arxiv: v1 [astro-ph.co] 23 Jun 2010

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Photoionized Gas Ionization Equilibrium

Chapter 10 The Interstellar Medium

IR Instrumentation & AGN: Revealing Inner Secrets. Chris Packham University of Florida 7 th October, 2011

Active Galactic Nuclei

Dusty star-forming galaxies at high redshift (part 5)

Chapter 11 The Formation of Stars

Dusty AGN torii. Ionization cones: toroidal obscuration

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

The Physics of the Interstellar Medium

arxiv: v1 [astro-ph.co] 12 Nov 2010

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes.

Surface Photometry Quantitative description of galaxy morphology. Hubble Sequence Qualitative description of galaxy morphology

The Milky Way Galaxy

The Interstellar Medium

Infrared Emission from the dusty veil around AGN

The parsec scale of. ac-ve galac-c nuclei. Mar Mezcua. International Max Planck Research School for Astronomy and Astrophysics

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Dust in the Diffuse Universe

Class #4 11 September 2008

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies

arxiv: v1 [astro-ph.co] 18 May 2010

Lecture 18 - Photon Dominated Regions

Star Formation Indicators

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

24.1 Hubble s Galaxy Classification

Active Galactic Nuclei-I. The paradigm

Astr 2310 Thurs. March 23, 2017 Today s Topics


Cavendish Laboratory, Madingley Road, Cambridge, UK

midterm exam thurs june 14 morning? evening? fri june 15 morning? evening? sat june 16 morning? afternoon? sun june 17 morning? afternoon?

Physics and Chemistry of the Interstellar Medium

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

The Milky Way Galaxy and Interstellar Medium

Active Galaxies & Emission Line Diagnostics

Notes on Photoionized Regions Wednesday, January 12, 2011

PART 3 Galaxies. Gas, Stars and stellar motion in the Milky Way

Normal Galaxies ASTR 2120 Sarazin

Interstellar Medium and Star Birth

SIMPLE RADIATIVE TRANSFER

80 2 Observational Cosmology L and the mean energy

PDR Modelling with KOSMA-τ

Active Galactic Nuclei

Chapter 15 The Milky Way Galaxy. The Milky Way

THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068

Luminous radio-loud AGN: triggering and (positive?) feedback

The Ecology of Stars

The gas and dust properties of NGC 891 with Herschel

The Galaxy. (The Milky Way Galaxy)

Quasars and Active Galactic Nuclei (AGN)

This document is provided by JAXA.

Transcription:

Dust processing of radiation in galaxies & Frank Heymann Ground based MIR observations Dust model Starburst Spirals AGN + vectorized Monte Carlo CenA (ESO)

Ground based MIR imaging Nuclear activity in nearby galaxies Surface brightness AGN viz. starbursts 10m telescopes

Ground based MIR imaging Nuclear activity in nearby galaxies Surface brightness AGN viz. starbursts - AGN - Starburst - Spirals Siebenmorgen Ralf et al. 08 Dwarfs: Madden, Lisenfeld

ELT 40m MIR surface brightness up to D ~ 500Mpc + 25 times deeper

MIR spectroscopy PAH No PAH Silicate emission Siebenmorgen Ralf et al. (2004, 2005) more on pc scale by Almudena Prieto

ISM dust Fitzpatrick (99)

ISM dust extinction Large Si + ac : 60Å < a <0.2-0.3µm ~ a -3.5 Small Graphite : 5Å < a < 80 Å ~a -3.5 PAH : 30 C + 200 C

ISM dust extinction Buat et al. 2011, at 1<z<2 : - bump 35% of MW - UV flatter SMC 1<z<2 LMC MW

ISM dust solar neighborhood Abundances [X/H in ppm]: 31Si + 150aC + 50gr + 30PAH extinction Si + ac : 60Å < a <0.2-0.3µm ~ a -3.5 Graphite : 5Å < a < 80 Å ~a -3.5 PAH : 30 C + 200 C

PAH band ratios: ionisation dehydrogenation

E o PAH destruction Unimolecular dissociation Arrhenius form: t dis ~ exp(e o /kt) / ν 0 «t cool ~ 1s T [K] t cool T min = E o /k ln(ν 0 ) ~2000K; E o ~ 5eV; ν 0 = 10 13 Hz ΔE = 3N c kt min ~ 0.1 N c. E b => N c < 2 ΔE /[ev] (PAH unstable) t abs ~ 1h time Tielens (2005) ; Micelotta et al. (2010) ; Siebenmorgen & Krűgel (2010)

PAH destruction E o Arrhenius form: t dis ~ exp(e o /kt) / ν 0 «t cool ~ 1s T min = E o /k ln(ν 0 ) ~2000K; E o ~ 5eV; ν 0 = 10 13 Hz ΔE = 3N c kt min ~ 0.1 N c. E b => N c < 2 ΔE /[ev] (PAH unstable) 1) single hard photon : independent of distance 2) many soft photons : ~inner torus Omont (1986) ; Tielens (2005) ; Siebenmorgen & Krűgel (2010)

Dust Radiative Transfer (RT) + Ray tracing techniques + Monte Carlo techniques 'exact RT' = dust self-absorption, multiple scattering, etc. Each team requires to implement approximations which are (sometimes) difficult to trace back. Models fit SED of Arp220 but differ in: M dust, R dust and

Dust radiative transfer models Mapping: Groves (talk), Dopita Efstathiou (talk) & Rowan-Robinson (2003) Takagi et al. (2003) Grasil: Silva, Granato 1D, no dust self-absorption only forward scattering 1D, (2D), uncoupled J MC +J cir, exact RT in SB, cirus as screen 1D, exact RT of homogenous distributed stars in dust sphere, no clumps 2d, uncoupled superposition of J * +J MC +J cir Cirus: no dust self absorption, approx. scattering Popescu, Tuffs, Kylavis, Xilours 2d, uncoupled bulge+2disk+clumps (template) no dust self absorption, 1 st scattering +approx. Siebenmorgen et al. 1+1D, exact RT, coupled J * +J MC +J cir

Krügel & Siebenmorgen (1994) ; Tutokov & Krügel (1978) (2007)

Starbursts Nucleus of NGC1808 Siebenmorgen et al. (2001)

PAH cross section Siebenmorgen et al. (2001), Draine & Li (2007); Tielens (2008)

SED library for SB luminosity size mass www.eso.org/~rsiebenm Siebenmorgen et al. (2007)

SB models of the nucleus: - UV: add photo-evolution models - submm: add cold dust - Outer region of M82 talk by Kaneda et al. (2011)

SMG at high z Efstathiou & Siebenmorgen (2009)

Spirals Controversy on energy balance M17 L FIR ~ 3 L * NGC891 M31

Model of bulge + old stellar population Xilouris et al. (1998)

NGC891 2 Disk components NGC 891 Ralf Popescu Siebenmorgen et al. (2000,2011) : SED + MIR radial, vertical profiles

2 Disk components Popescu et al. (2011,2000)

2 Disk components Bulge Popescu et al. (2000,2011)

Tau(B)=3.5 NGC891 2 Disk components Attenuation-inclination relation (Driver et al. 2007)

Tau(B)=3.5 NGC891 2 Disk components Hot Spots? Bianchi (2008)

Tau(B)=3.5 NGC891 1 Disk L FIR = 3 L * Baes et al. (2011) Talk: Andreas Efstathiou on 1disk model Ilse De Looze on Sombrero Large fluffy grains?

Krügel&Siebenmorgen (1994) Ralf talk Siebenmorgen by Bendo et al. (2010)

AGN + vectorized Monte Carlo CenA (ESO)

AGN + vectorized Monte Carlo face-on edge-on - density structure 3D models: Heymann (PhD) Schartmann et al. (2008) MIDI: Tristram (2007) Statistical model: Nenkova et al.(2002, 2008)

Arbitrary dust distribution Pseudo adaptive mesh Monte Carlo 1. geometry

Monte Carlo Source emits photon packages of equal energy 1. geometry 2. source

Monte Carlo = - ln(ζ) absorption / scattering / no interaction 1. geometry 2. source 3. inter-action 4. dust temperature

Monte Carlo Photons escape model cloud 1. geometry 2. source 3. inter-action 4. temperature 5. detection

MC parallelization Multiple photons at a time: Challenges Cell locked when hit by photon Parallel random number generator (Mersene Twister) Computer games Graphical Processing Units (CUDA) Heymann (2010, PhD)

MC methods Method Parallelization Advantage Time Lucy Bjorkman & Wood YES (but floating) Partly (not independent) Benchmark sphere τ~1000) Optical thin >1h No iteration 5min our YES GPU <1min

2D benchmark face-on edge-on 1 = 10 100 ~10% for 0

AGN + vectorized Monte Carlo - Application Siebenmorgen et al. (2005)

Model X-ray heating (E&RR 93) N clumps ~ 200 5000 r i ~ dust sublimation r out ~ 20 r i dust temperatures [K]

Shadows caused by clump structure dark side: cold bright side: hot

Emission + scattering light AGN tours

MIR observations from ground Conclusions Dust model of the diffuse ISM for extinction and emission applied to external galaxies PAH: - ionisation viz hydrogenation - destruction by hard photons Starburst: - simplifications in RT - SED library for dust in SB nuclei Spirals: AGN: - controversy on energy balance - 2 disks viz. fluffy grains - vectorized MC on GPU - clumpy AGN torus model 3C249.1

Mean SED of 3CR sources Data: Haas et al (2008), Leipski et al. (2010) Θ

2D benchmark Pascucci et al. (2004) Disk: T * = 5800K L * = L sun ρ(r) : hydro static equilibrium (Chiang & Goldreich 1997)

Number of clouds SED of AGN Quasar RG

PAH in a mono-energetic heating bath if U f U i hν < ½ ΔU f : A fi = K ν F ν / hν & Krűgel (2010)

1D MC versus benchmark 1 A V =10 100 1000 mag Sphere T * = 2500K ρ(r) = const. ~5% for 0

Comparison of 2 ray tracing codes Dust sphere: A V = 1000mag, heated by star Benchmark = Dusty code (Iveciz et al. 1999): unphysical at faint flux levels

PAH replenishment Vertical mixing in torus? l /v = t exp > N C t abs & Krűgel (2010)

AGN and hard photons (EUV, soft X-ray)

Monte Carlo + PAH

Monte Carlo + PAH store PAH absorption events of each cell compute PAH emission neglect PAH self absorption

PAH band ratios: Observations

PAH band ratios: Hardness of exciting radiation

Voshchinikov (2004) ISM dust polarisation Linear polarisation spheroids Circular polarisation Prolate Oblate

ISM dust polarisation spherical grains