SECOND YEAR ORGANIC CHEMISTRY - REVISION COURSE Lecture 2 MOLECULAR STRUCTURE 2: SPECTROSCOPIC ANALYSIS

Similar documents
NMR = Nuclear Magnetic Resonance

Chapter 15 Lecture Outline

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Chapter 13: Molecular Spectroscopy

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

The Use of NMR Spectroscopy

William H. Brown & Christopher S. Foote

Chapter 13 Spectroscopy

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

11. Proton NMR (text , 12.11, 12.12)

NMR Spectroscopy. Chapter 19

Chapter 14 Spectroscopy

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

3.15 Nuclear Magnetic Resonance Spectroscopy, NMR

13.24: Mass Spectrometry: molecular weight of the sample

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

Experiment 2 - NMR Spectroscopy

C NMR Spectroscopy

Chapter 16 Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR)

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Lecture Notes Chem 51A S. King

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

Nuclear Magnetic Resonance Spectroscopy (NMR)

The rest of topic 11 INTRODUCTION TO ORGANIC SPECTROSCOPY

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Infrared Spectroscopy

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CH 3. mirror plane. CH c d

An Introduction to NMR Spectroscopy. The types of information accessible via high resolution NMR include:

ORGANIC - BROWN 8E CH NUCLEAR MAGNETIC RESONANCE.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

Module 13: Chemical Shift and Its Measurement

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Calculate a rate given a species concentration change.

Structure Determination

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination

Nuclear Magnetic Resonance

Nuclear magnetic resonance spectroscopy

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

22 and Applications of 13 C NMR

Lecture 2 nmr Spectroscopy

ORGANIC SPECTROSCOPY NOTES

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H

Instrumental Chemical Analysis

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

1. neopentyl benzene. 4 of 6

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Analysis of NMR Spectra Part 2

Infrared Spectroscopy: Identification of Unknown Substances

Nuclear spin and the splitting of energy levels in a magnetic field

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Nuclear Magnetic Resonance Spectroscopy

ORGANIC - EGE 5E CH NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy. An 1 H NMR FID of ethanol

Can you differentiate A from B using 1 H NMR in each pair?

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

CH Exam #4 (Take Home) Date Due: 11/25,26/2013

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13

Nuclear Magnetic Resonance Spectroscopy

Fluorescence and Nuclear Magnetic Resonance (NMR) Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

- 1/2. = kb o = hνν + 1/2. B o increasing magnetic field strength. degenerate at B o = 0

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 )

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

16.1 Introduction to NMR. Spectroscopy

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

Welcome to Organic Chemistry II

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface

Introduction to NMR spectroscopy

To Do s. Answer Keys are available in CHB204H

January 30, 2018 Chemistry 328N

HWeb27 ( ; )

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

To Do s. Answer Keys are available in CHB204H

Unit 2 Organic Chemistry. 2.3 Structural Analysis Part 2:

Chapter 13. R.F.----µ-wave----I.R. (Heat)------Visible------U.V X-Ray------γ-Ray SPECTROSCOPY. Definition: Types to Be Covered:

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra

Transcription:

Prof Ben Davis SECOND YEAR ORGANIC CEMISTRY - REVISION COURSE Lecture 2 MOLECULAR STRUCTURE 2: SPECTROSCOPIC ANALYSIS Books: Williams and Fleming, " Spectroscopic Methods in Organic Chemistry", arwood and Claridge, Organic Spectroscopy OCP arwood and Moody, Experimental Organic Chemistry, Ch 5 Morrison and Boyd, Organic Chemistry, 6th Edition, Chapter 17 Claridge igh-resolution NMR Techniques in Organic Chemistry A more advanced text bit very up to date and an excellent resource A. MASS SPECTROMETRY Analysis of compounds by mass spectrometry depends upon ionising a molecule, and then separating these ions by passage through a magnetic field; the ions are separated according to their m/e ratio. Ionisation can be achieved in various ways, e.g. by bombarding the sample with a beam of high energy electrons (Electron Impact), or by collisions with other charged ions such as C 5 + or N 4 + or even MeO - (Chemical Ionisation) or Electrospray. EI M + e - -----> M + + 2e - EI generally leads to extensive fragmentation, giving a pattern of signals which can be used to deduce the structure of the compound, but also often means that the molecular ion signal is very weak or missing. CI M + C 5 + -----> M + + C 4 M + C 3 O - -----> (M-) - + C 3 O CI is that the ionisation process generates an ion which is less highly energetic and does not spontaneously collapse; thus, the molecular ion is often the base peak. ES is milder still and even allows e.g. proteins to be examined. Mass spectra allow the direct determination of molecular weight, since for most ions e = 1. Furthermore, decomposition of the compound under the ionising conditions generates fragment ions which are often diagnostic for various compound classes. The intensity of each of these peaks is a measure of the relative abundance of the ion responsible for the signal, which in turn depends on their relative stability, e.g. PhC 2 C 3 -----> [PhC 2 C 3 ] + -----> PhC + C 3 PhC 2 + Ph + 25% 95% 10% Extensive tables of common fragment ions are available in standard reference texts. igh resolution experiments (to 4DP (5-10ppm)) permit exact molecular composition to be verified, by comparison with the molecular mass calculated from the exact masses of the most abundant isotopes for the constituent atoms, e.g. Ph 2 (C 3 )C MW=C 14 14 PhN=NPh MW=C 12 10 N 2 182.2646 182.2244 1

B. ELECTROMAGNETIC SPECTRUM By irradiating molecules at different frequencies, we can gain different types of information about their structure, since these frequencies will bring in to resonance various modes of molecular motion, or electronic or nuclear excitation. (i). INFRA-RED SPECTROSCOPY - Molecular vibrations as a source of bonding information - stretching and bending - Measured in cm -1 - Characteristic group frequencies for various functional groups, broadly governed by ooke's Law, so resonance frequency is directly dependent on bond strength and inversely related to mass. - Typical absorptions are: - Absorption of common functional groups (cm -1 ) ydrocarbons C-C 1500 C=C 1650 C=C 2100 C- 3000 Alcohols O- 3200-3600 (broad) C-O 1100 2

Carbonyl For RC(O)X, the more electronegative X, the higher the absorption frequency (thus, acid chlorides, anhydrides and esters absorb at a higher frequency than ketones). Conversely, the more electron releasing by resonance is X, the lower the frequency (this is because the C=O is weakened, i.e. has more single bond character and therefore is more near the "normal" C-O resonance at 1100): RC(O)O(O)R RC(O)Cl RC(O)OR' RCO RC(O)R RC(O)NR' 2 1850 1800 1750 1740 1720 1690 Conjugation to C=C lowers frequency by 15-40cm -1 Ring strain raises the frequency (smaller the ring, higher the frequency), but 6 membered rings show the normal frequency ydrogen bonding to the C=O lowers frequency by about 50cm -1 Complications arise from - overtones (appear at twice the frequency of the fundamental) - shifting, due to conjugation, electron withdrawal, strain (angle or Van der Waals) and hydrogen bonding... but these shifts can also be very useful for definitively assigning structure once they have been recognized. 3

(ii). ULTRAVIOLET/VISIBLE SPECTROSCOPY - Electronic transitions as a source of bonding information, since absorption of a photon leads to excitation of electrons from a ground state to an excited one; - The wavelength (λ max ) of an absorption (in nm) can be used to deduce details of the structure of the chromophore. UV spectroscopy is most important in the structural analysis of compounds containing π electrons, and particularly highly conjugated systems; - There are empirical rules available for predicting λ max values; - The absorption is governed by Beer-Lambert Law: A = log(i / I 0) =!.c.l where I = transmitted light intensity I o = incident light intensity c = concentration (M) l = path length of cell (cm) ε = molar extinction coefficient ( usually in the range 0-10 5, with <10 3 considered to be a weak absorption) - The most frequently observed and therefore the most important transitions are the ones which involve loosely held n and π electrons - Typical absorptions are: n ---->!* C O C O! ---->!* C O C O 4

(iii). NMR SPECTROSCOPY In the presence of an applied magnetic field, nuclei can align themselves in 2I+1 ways, where I is the nuclear spin; this is because nuclei can be considered to spin, and this circulation of charge generates a magnetic moment. For the most important nuclei, 1 and 13 C, which have I =1/2, this means that they can take up 2 orientations, * aligned to the field (low E) * opposed to the field (high E) with the difference in energy given by ΔE = hγb0/2π and number in each orientation is given by Boltzmann distribution Nβ/Nα = exp(-δe/kt) This difference is usually very small (1 in 10 5 ) and requires sensitive electronic detection; this makes the NMR technique insensitive compared to UV and IR. But the higher B o, the bigger the Nβ/Nα difference, and the better sensitivity. The application of FT techniques also gives improved spectra, since successively acquired FIDs can be added. A pulse of radio frequency radiation is applied, which disturbs the equilibrium ground state Boltzmann distribution; relaxation from this excited state emits radiation at right angles to the applied field, which is detected by a suitable RF receiver. NMR Active Nuclei NMR Inactive Nuclei (I=1/2) (I=3/2) (I=0) 1 (99.98%) 11 B(80%) 12 C (98.9%) 13 C (1.108%) 7 Li(93%) 16 O (99.96%) 19 F (100%) 35 Cl 29 Si (4.70%) 79 Br 31 P (100%) (a) Chemical Shift The precise resonance frequency of any active nucleus is very sensitive to its surrounding magnetic environment; this is due largely to local variations in electron density, which of course creates a magnetic field. Thus the field experienced by any nucleus is given by the sum of the applied magnetic field and the local magnetic field. In practice, this means that different nuclei have (slightly) different resonance frequencies, allowing their individual identification. 5

Because this difference is due to their chemical nature, we talk about the chemical shift of the relevant nuclei, which is defined as: δ = (νs - νtms(z))/bo(mz) δ is essentially the resonance frequency relative to TMS (Me 4 Si), which is a non-toxic, cheap and chemically inert reference. The conventional representation is:! 10 0! c 200 0 Downfield (low field) Dieshielded igher! Upfield (high field) Shielded Lower! Some typical chemical shift values: 10 0 PhCO 9.8 C 6 6 7.37 CCl 3 7.27 C 2 Cl 2 5.30 C 3 COC 3 2.17 C 3 C 2 OAc 1.25 C 3 C 2 OAc 4.12 EtOCOC 3 2.04 We say that nuclei with the same chemical shift are chemically equivalent. (this implies that they must also be stereochemically equivalent). If not, they can be enantiotopic or prochiral e.g. environment) (indistinguishable in achiral C 3 Cl diastereotopic e.g. 3 C Br or Cl C 3 Cl 6

Factors Affecting Chemical Shift (i) Inductive effect EWG deshield adjacent nuclei (i.e. shift downfield to higher δ) ERG shield adjacent nuclei (i.e. shift upfield to lower δ) ydrogen bonding results in deshielding of a proton (since its bonding electrons are now shared with a third atom), giving a downfield shift of the proton. (iv) Solvent Changing from CCl 4 or CDCl 3 to deuterated acetone, MeO, or DMSO can have a noticeable effect on chemical shift, and C 6 D 6 can have a very large effect on chemical shift of certain protons. (b) Integration The area under the resonance peak for any type of proton is directly proportional to the number of protons resonating at that frequency. owever, this is not usually true in carbon NMR, hence these NMR are never routinely integrated. (c) Coupling (First Order) The signal given by any proton is influenced by its adjacent protons; splitting of the signal is caused by spin-spin coupling. A set of n equivalent protons will split the signal for its immediate neighbour (adjacent) protons into n+1 peaks. The splitting can be quantified as the coupling constant, expressed in z, which is independent of the applied field. Nuclear Overhauser Effect noe spectra enable the identification of protons which are nearby in space. Two- Dimensional Techniques COSY allows the assignment of 3 J coupled protons, and are plotted as 2D spectra; this plot is a contour plot, with the basic spectrum along the diagonal, and cross-peaks indicate peaks which are coupled 7

CARBON NMR The isotope 13 C has an abundance of only 1.1%, but spectra can still be acquired, although longer acquisition times are needed. The parameters of the carbon NMR spectrum are similar to proton, and give much the same sort of information: (a) Chemical shift gives an indication of the electronic environment of the nucleus; a rough rule is that the chemical shift of any carbon is about 20 times the magnitude of the chemical shift of its attached proton; 220 C 3 COC 3 206 EtOCOC 3 170 C 6 6 129 CCl 3 78 C 3 C 2 OAc 60 C 2 Cl 2 54 C 3 COC 3 30 EtOCOC 3 20 0 C 3 C 2 OAc 14 (b) The multiplicity of a carbon with n attached protons is n+1; however, carbon spectra are routinely run with off-resonance proton decoupling, so all peaks appear as singlets. The use of DEPT sequence allows the identity of each carbon resonance to be determined; (c) Unlike proton NMR, however, integration of the signal is not an accurate indication of the numbers of nuclei resonating at any given frequency; this is a result of the way in which carbon spectra are routinely acquired. 8