재규격화군흐름, 녹채 & Holography 과홀로그래피

Similar documents
Entanglement & C-theorems

5. a d*, Entanglement entropy and Beyond

Holographic Entanglement Entropy. (with H. Casini, M. Huerta, J. Hung, M. Smolkin & A. Yale) (arxiv: , arxiv: )

RG Flows, Entanglement & Holography Workshop. Michigan Center for Theore0cal Physics September 17 21, 2012

Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity

Entanglement, geometry and the Ryu Takayanagi formula

D.Blanco, H.C., L.Y.Hung, R. Myers (2013)

Anomalies and Entanglement Entropy

Holographic Entanglement Entropy

Quantum Information and Entanglement in Holographic Theories

Entanglement Entropy for Disjoint Intervals in AdS/CFT

Entanglement entropy and the F theorem

Quantum Entanglement and the Geometry of Spacetime

Overview: Entanglement Entropy

Stress tensor correlators from holography

AdS/CFT Correspondence and Entanglement Entropy

Holographic Entanglement Beyond Classical Gravity

Aspects of Renormalized Entanglement Entropy

Holographic entanglement entropy beyond AdS/CFT

Holographic Entanglement entropy and second law of Black holes. Sudipta Sarkar

Counterterms, critical gravity and holography

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

Properties of entropy in holographic theories

Higher Spin AdS/CFT at One Loop

Universal entanglement of non-smooth surfaces

Quantum mechanics and the geometry of spacetime

Renormalisation Group Flows in Four Dimensions and the a-theorem

From Path Integral to Tensor Networks for AdS/CFT

20 Entanglement Entropy and the Renormalization Group

Entanglement Entropy and AdS/CFT

Renormalized entanglement entropy and the number of degrees of freedom

Holographic c-theorems and higher derivative gravity

arxiv: v3 [hep-th] 11 Feb 2015

Holographic Entanglement Entropy

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

On a holographic quantum quench with a finite size effect

One Loop Tests of Higher Spin AdS/CFT

Quantum Null Energy Condition A remarkable inequality in physics

Entanglement in Quantum Field Theory

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Reconstructing Bulk from Boundary: clues and challenges

Don Marolf 7/17/14 UCSB

On the calculation of entanglement entropy in quantum field theory

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Entanglement Entropy in Flat Holography

Bit Threads and Holographic Entanglement

Insight into strong coupling

Introduction to AdS/CFT

Quantum Entanglement in Holography

Insight into strong coupling

Dynamics of Entanglement Entropy From Einstein Equation

Towards a holographic formulation of cosmology

SPACETIME FROM ENTANGLEMENT - journal club notes -

Holography and (Lorentzian) black holes

Entanglement and the Bekenstein-Hawking entropy

Causality Constraints in Conformal Field Theory

Disentangling Topological Insulators by Tensor Networks

New Compressible Phases From Gravity And Their Entanglement. Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013

Exact holography and entanglement entropy from one-point functions

Holographic phase space and black holes as renormalization group flows

Information Metric and Holography

A Proof of the Covariant Entropy Bound

RÉNYI ENTROPY ON ROUND SPHERES:

HOLOGRAPHIC PROBES! COLLAPSING BLACK HOLES OF! Veronika Hubeny! Durham University & Institute for Advanced Study

From Black holes to Qubits through String Theoretic Microscopes

Entanglement Inequalities

Introduction to Black Hole Thermodynamics. Satoshi Iso (KEK)

Quantum Operations in CFTs and Holography

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University

Non-relativistic holography

21 Holographic Entanglement Entropy

Quantum mechanics and the geometry of space4me

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Black Hole Entropy and Gauge/Gravity Duality

Entanglement Entropy In Gauge Theories. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India.

Quantum phase transitions in condensed matter

EPR Pairs, Local Projection and Quantum Teleportation in Holography

19 Entanglement Entropy in Quantum Field Theory

Eric Perlmutter, DAMTP, Cambridge

Holographic relations at finite radius

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula

arxiv: v2 [hep-th] 13 Sep 2015

Why we need quantum gravity and why we don t have it

On the Holographic Entanglement Entropy for Non-smooth Entangling Curves in AdS 4

Chemical Potential in the First Law for Holographic Entanglement Entropy

Rényi Entropy in AdS 3 /CFT 2 (with W symmetry)

arxiv: v1 [hep-th] 21 Sep 2017

arxiv: v2 [hep-th] 17 Aug 2018

Towards a 2nd Law for Lovelock Theory

CFTs with O(N) and Sp(N) Symmetry and Higher Spins in (A)dS Space

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES

Topologically Massive Gravity and AdS/CFT

Dynamical fields in de Sitter from CFT entanglement

Mutual information and the F -theorem

Emergent Quantum Criticality

17 Eternal Black Holes and Entanglement

Second law of black-hole thermodynamics in Lovelock theories of gravity

Emergent Spacetime. Udit Gupta. May 14, 2018

BLACK HOLES IN 3D HIGHER SPIN GRAVITY. Gauge/Gravity Duality 2018, Würzburg

Transcription:

RG Flows, Entanglement 재규격화군흐름, 녹채 & Holography 과홀로그래피 Strings 2013 Sogang Univesity, Seoul Korea, 26-29 June 2013

New Dialogues in Theoretical Physics: Particle Physics Statistical Mechanics Renormalization Group Flows Quantum Field Theory Holographic RG Flows Many Body Theory Quantum Information Entanglement Holography String Theory Condensed Matter Theory Quantum Gravity

Quantum Entanglement Einstein-Podolsky-Rosen Paradox: properties of pair of photons connected, no matter how far apart they travel spukhafte Fernwirkung = spooky action at a distance Quantum Information: entanglement becomes a resource for (ultra)fast computations and (ultra)secure communications Condensed Matter: key to exotic phases and phenomena, e.g., quantum Hall fluids, unconventional superconductors, quantum spin fluids,....

Quantum Entanglement Einstein-Podolsky-Rosen Paradox: properties of pair of photons connected no matter how far apart they travel spukhafte Fernwirkung = spooky action at a distance compare: No Entanglement!! Entangled!!

Entanglement Entropy: general diagnostic: divide quantum system into two parts and use entropy as measure of correlations between subsystems procedure: divide system into two subsystems, eg, A and B trace over degrees of freedom in subsystem B remaining dof in A are described by a density matrix calculate von Neumann entropy: compare: No Entanglement!! Entangled!!

New Dialogues in Theoretical Physics: Particle Physics Statistical Mechanics Renormalization Group Flows Quantum Field Theory Holographic RG Flows Many Body Theory Quantum Information Entanglement Holography String Theory Condensed Matter Theory Holographic Entanglement Entropy Quantum Gravity

Entanglement Entropy 2: in the context of holographic entanglement entropy, S EE is applied in the context of quantum field theory in QFT, typically introduce a (smooth) boundary or entangling surface which divides the space into two separate regions integrate out degrees of freedom in outside region remaining dof are described by a density matrix calculate von Neumann entropy: A B

Entanglement Entropy 2: remaining dof are described by a density matrix calculate von Neumann entropy: A R B result is UV divergent! dominated by short-distance correlations must regulate calculation: = short-distance cut-off = spacetime dimension careful analysis reveals geometric structure, eg,

Entanglement Entropy 2: remaining dof are described by a density matrix calculate von Neumann entropy: A R B must regulate calculation: = short-distance cut-off = spacetime dimension leading coefficients sensitive to details of regulator, eg, find universal information characterizing underlying QFT in subleading terms, eg,

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) AdS boundary A B boundary conformal field theory AdS bulk spacetime gravitational potential/redshift UV divergence because area integral extends to looks like BH entropy!

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) AdS boundary A B regulator surface cut-off in boundary CFT: UV divergence because area integral extends to as usual, central introduce charge regulator surface at large radius: (counts short-distance dof) cut-off in boundary theory: Area Law

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) AdS boundary A B regulator surface cut-off in boundary CFT: general expression (as desired): (d even) universal contributions (d odd)

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: 1) leading contribution yields area law 2) recover known results for d=2 CFT: (Holzhey, Larsen & Wilczek) (Calabrese & Cardy) 3) in a pure state and both yield same bulk surface V 4) for thermal bath:

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: 5) strong sub-additivity: (Headrick & Takayanagi) [ further monogamy relations: Hayden, Headrick & Maloney] 6) for even d, connection of universal/logarithmic contribution in S EE to central charges of boundary CFT, eg, in d=4 c a (Hung, RM & Smolkin) 7) derivation of holographic EE for spherical entangling surfaces (Casini, Huerta & RM, RM & Sinha)

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: new proof!!! (Lewkowycz & Maldacena) generalization of Euclidean path integral calc s for S BH, extended to periodic bulk solutions without Killing vector for AdS/CFT, translates replica trick for boundary CFT to bulk at, linearized gravity eom demand: shrinks to zero on an extremal surface in bulk evaluating Einstein action yields for extremal surface

Topics currently trending in Holographic S EE : (Ryu & Takayanagi `06 111 cites in past year of total of 317) thermodynamic properties of of S EE Sfor EE for excited excited states states entanglement tsunami probe of holo-quantum quenches probe of large-n phase transitions at finite volume phase transitions in holographic Renyi entropy holographic S EE in higher spin gravity (Bhattacharya, Nozaki, Takayanagi & Ugajin;...) (Liu & Suh) (Johnson) (Belin, Maloney & Matsuura) (Ammon, Castro & Iqbal; de Boer & Jottar) holographic S EE beyond classical gravity (Barrella, Dong, Hartnoll & Martin) probing causal structure in the bulk (Hubeny, Maxfield, Rangamani & Tonni) holographic Renyi entropy for disjoint intervals (Faulkner; Hartman)

New Dialogues in Theoretical Physics: Statistical Mechanics Particle Physics John Preskill (quant-ph/9904022) Quantum information and physics: some future directions???? Renormalization Group Flows Quantum Field Theory Holographic RG Flows Many Body Theory Quantum Information Entanglement Holography String Theory Condensed Matter Theory Holographic Entanglement Entropy Quantum Gravity

Zamolodchikov c-theorem (1986): renormalization-group (RG) flows can seen as one-parameter motion in the space of (renormalized) coupling constants with beta-functions as velocities for unitary, renormalizable QFT s in two dimensions, there exists a positive-definite real function of the coupling constants : 1. monotonically decreasing along flows: 2. stationary at fixed points : : 3. at fixed points, it equals central charge of corresponding CFT

with Zamolodchikov's framework: BECOMES

with Zamolodchikov's framework: Consequence for any RG flow in d=2:

C-theorems in higher even dimensions?? d=2: d=4: and in 4 dimensions, have three central charges: do any of these obey a similar c-theorem under RG flows? -theorem: is scheme dependent (not globally defined) -theorem: there are numerous counter-examples Cardy s conjecture (1988): -theorem: for any RG flow in d=4, numerous nontrivial examples, eg, perturbative fixed points (Jack & Osborn), SUSY gauge theories (Anselmi et al; Intriligator & Wecht) JP: perhaps QI can provide insight into c-theorems for odd dim s

Entanglement proof of c-theorem: (Casini & Huerta 04) c-theorem for d=2 RG flows can be established using unitarity, Lorentz invariance and strong subaddivity inequality: define: for d=2 CFT: (Holzhey, Larsen & Wilczek) (Calabrese & Cardy) hence it follows that:

New Dialogues in Theoretical Physics: Particle Physics Statistical Mechanics c theorems?? Renormalization Group Flows Quantum Field Theory Holographic RG Flows Many Body Theory Quantum Information Entanglement Holography String Theory Condensed Matter Theory Holographic Entanglement Entropy Quantum Gravity

Holographic RG flows: (Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126) (Freedman, Gubser, Pilch & Warner, hep-th/9904017) imagine potential has stationary points giving negative Λ consider metric: at stationary points, AdS 5 vacuum: with HRG flow: solution starts at one stationary point at large radius and ends at another at small radius connects CFT UV to CFT IR IR UV

Holographic RG flows: for general flow solutions, define: (Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126) (Freedman, Gubser, Pilch & Warner, hep-th/9904017) Einstein equations null energy condition at stationary points, and hence using holographic trace anomaly: supports Cardy s conjecture for Einstein gravity, central charges equal : (e.g., Henningson & Skenderis)

Holographic RG flows: (Freedman, Gubser, Pilch & Warner, hep-th/9904017) same story is readily extended to (d+1) dimensions defining: at stationary points, Einstein equations null energy condition and so using holographic trace anomaly: for even d! what about odd d? central charges (e.g., Henningson & Skenderis)

Improved Holographic RG Flows: add higher curvature interactions to bulk gravity action provides holographic field theories with, eg, so that we can clearly distinguish evidence of a-theorem (Nojiri & Odintsov; Blau, Narain & Gava) construct toy models with fixed set of higher curvature terms (where we can maintain control of calculations) What about the swampland? constrain gravitational couplings with consistency tests (positive fluxes; causality; unitarity) and use best judgement ultimately one needs to fully develop string theory for interesting holographic backgrounds! if certain general characteristics are true for all CFT s, then holographic CFT s will exhibit the same features

Toy model: (RM & Robinsion; RM, Paulos & Sinha) with three dimensionless couplings: again, gravitational eom and null energy conditon yield: (RM & Sinha) where with central charge of boundary CFT toy model supports for Cardy s conjecture in four dimensions

for holographic RG flows with general d, find: (RM & Sinha) where with trace anomaly for CFT s with even d: (Deser & Schwimmer) verify that we have precisely reproduced central charge (Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava; Imbimbo, Schwimmer, Theisen & Yankielowicz) agrees with Cardy s conjecture What about odd d??

Holographic Entanglement Entropy: S EE for CFT in d-dim. flat space and choose S d-2 conformal mapping relate to thermal entropy on with R ~ 1/R 2 and T=1/2πR (Casini, Huerta & RM; RM & Sinha) with radius R holographic dictionary: thermal bath in CFT = black hole in AdS desired black hole is a hyperbolic foliation of AdS bulk coordinate transformation implements desired conformal transformation on boundary apply Wald s formula (for any gravity theory) for horizon entropy: universal contributions: for even d for odd d

C-theorem conjecture: identify central charge with universal contribution in entanglement entropy of ground state of CFT across sphere S d-2 of radius R: for even d (RM & Sinha) for RG flows connecting two fixed points for odd d (any gravitational action) ( unitary models) unified framework to consider c-theorem for odd or even d connect to Cardy s conjecture: for any CFT in even d

F-theorem: (Jafferis, Klebanov, Pufu & Safdi) examine partition function for broad classes of 3-dimensional quantum field theories on three-sphere (SUSY gauge theories, perturbed CFT s & O(N) models) in all examples, F= log Z(S 3 )>0 and decreases along RG flows conjecture: also naturally generalizes to higher odd d coincides with entropic c-theorem (Casini, Huerta & RM) focusing on renormalized or universal contributions, eg, generalizes to general odd d:

Entanglement proof of F-theorem: (Casini & Huerta 12) F-theorem for d=3 RG flows established using unitarity, Lorentz invariance and strong subaddivity geometry more complex than d=2: consider many circles intersecting on null cone (no corner contribution from intersection in null plane) define: for d=3 CFT: hence it follows that:

Renormalized Entanglement Entropy: (Liu & Mezei) S EE is UV divergent, so must take care in defining universal term divergences determined by local geometry of entangling surface with covariant regulator, eg, can isolate finite term with appropriate manipulations, eg, d=3: c-function of Casini & Huerta d=4: unfortunately, holographic experiments indicate good c-functions for d>3 are not

(Casini, Huerta, RM & Yale) Renormalized Entanglement Entropy 2: S EE is UV divergent, so must take care in defining universal term mutual information is intrinsically finite and so offers alternative approach to regulate S EE with and choice ensures that a 3 is not polluted by UV fixed point naturally extends to defining a d in higher odd dimensions for d=3, entropic proof of F-theorem can be written in terms of mutual information

(Komargodski & Schwimmer; see also: Luty, Polchinski & Rattazzi) a-theorem and Dilaton Effective Action analyze RG flow as broken conformal symmetry couple theory to dilaton (conformal compensator) and organize effective action in terms of diffeo X Weyl invariant: follow effective dilaton action to IR fixed point, eg, (Schwimmer & Theisen) with : ensures UV & IR anomalies match, only contribution to 4pt amplitude with null dilatons: dispersion relation plus optical theorem demand:

a-theorem, Dilaton and Entanglement Entropy (Solodukhin) find anomaly contribution for S EE for conformally flat background and flat entangling surface, can express coefficient in terms of spectral density for analogous to effective-dilaton-action analysis for d=2 (Komargodski)

Questions: how much of Zamalodchikov s structure for d=2 RG flows extends higher dimensions? d=3 entropic c-function not always stationary at fixed points (Klebanov, Nishioka, Pufu & Safdi) can c-theorems be proved for higher dimensions? eg, d=5 or 6 dilaton-effective-action would require subtle refinement for d=6 (Elvang, Freedman, Hung, Kiermaier, RM & Theisen; Elvang & Olson) does scale invariance imply conformal invariance beyond d=2? at least, perturbatively in d=4 (Nakayama) (Luty, Polchinski & Rattazzi) further lessons for RG flows and entanglement from holography? translation of null energy condition to boundary theory? what can entanglement entropy/quantum information really say about renormalization group and holography?

New Dialogues in Theoretical Physics: Particle Physics Statistical Mechanics c, a, F-theorems Renormalization Group Flows Quantum Field Theory Holographic RG Flows Many Body Theory Quantum Information Entanglement Holography String Theory Condensed Matter Theory Holographic Entanglement Entropy Quantum Gravity

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: 1) leading contribution yields area law 2) recover known results of Calabrese & Cardy for d=2 CFT (also result for thermal ensemble)

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: 3) in a pure state and both yield same bulk surface V cf: thermal ensemble pure state horizon in bulk AdS boundary

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: 4) for thermal bath:

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: 4) Entropy of eternal black hole = entanglement entropy of boundary CFT & thermofield double (Maldacena; Headrick) thermofield double boundary CFT extremal surface = bifurcation surface

Holographic Entanglement Entropy: (Ryu & Takayanagi `06) conjecture Extensive consistency tests: 5) strong sub-additivity: (Headrick & Takayanagi) [ further monogamy relations: Hayden, Headrick & Maloney]

Holographic Entanglement Entropy beyond Einstein: Recall consistency tests: 4) Entropy of eternal black hole = entanglement entropy of boundary CFT & thermofield double 5) strong sub-additivity: for more general holographic framework, expect (Headrick & Takayanagi) includes corrections corrections

for more general holographic framework, expect some progress with classical higher curvature gravity: note is not unique! and is wrong choice! correct choice understood for Lovelock theories (deboer, Kulaxizi & Parnachev) (Hung, Myers & Smolkin) test with universal term for d=4 CFT: c (Solodukhin) a thermal entropy universal contribution

for more general holographic framework, expect some progress with classical higher curvature gravity: note is not unique! and is wrong choice! correct choice understood for Lovelock theories (deboer, Kulaxizi & Parnachev) (Hung, Myers & Smolkin) test with universal term for d=4 CFT: c (Solodukhin) a seems consistent with Lewkowycz-Maldacena proof (Bhattacharyya, Kaviraj & Sinha; Fursaev, Patrushev & Solodukhin) (Chen & Zhang??)

Lessons from Holographic EE: compare two theories: tune: both theories have same AdS vacuum clearly S EE is not tied to causal structure or even geometry alone A boundary of causal domain extremal surface for GB gravity extremal surface for Einstein gravity

F-theorem: (Jafferis, Klebanov, Pufu & Safdi) examine partition function for broad classes of 3-dimensional quantum field theories (SUSY and non-susy) on three-sphere in all examples, F= log Z >0 and decreases along RG flows coincides with our conjectured c-theorem! (Casini, Huerta & RM) consider S EE of d-dimensional CFT for sphere S d 2 of radius R conformal mapping: causal domain curvature ~ 1/R and thermal state: stress-energy fixed by trace anomaly vanishes for odd d! upon passing to Euclidean time with period : for any odd d

F-theorem: must focus on renormalized or universal contributions, eg, generalizes to general odd d: equivalence shown only for fixed points but good enough: UV IR evidence for F-theorem (SUSY, perturbed CFT s & O(N) models) supports present conjecture and our holographic analysis provides additional support for F-theorem