Research Article Theoretical Analysis of Effects of Wall Suction on Entropy Generation Rate in Laminar Condensate Layer on Horizontal Tube

Similar documents
Film condensation on horizontal tube with wall suction effects

FORCED CONVECTION FILM CONDENSATION OF DOWNWARD-FLOWING VAPOR ON HORIZONTAL TUBE WITH WALL SUCTION EFFECT

LAMINAR FILM CONDENSATION ON A HORIZONTAL PLATE IN A POROUS MEDIUM WITH SURFACE TENSION EFFECTS

Chapter 7: Natural Convection

An analytical investigation into the Nusselt number and entropy generation rate of film condensation on a horizontal plate

Performance Analyses of a Multiple Horizontal Tubes for Steam Condensation

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Research Article Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

PHYSICAL MECHANISM OF CONVECTION

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Research Article Numerical Study of Laminar Flow Forced Convection of Water-Al 2 O 3 Nanofluids under Constant Wall Temperature Condition

UNIT II CONVECTION HEAT TRANSFER

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

Convection Heat Transfer. Introduction

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis. S.A. Abdel-Moneim and R.K. Ali*

6. Laminar and turbulent boundary layers

Entropy Generation Analysis for Various Cross-sectional Ducts in Fully Developed Laminar Convection with Constant Wall Heat Flux

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Numerical Heat and Mass Transfer

A problem of entropy generation in a channel filled with a porous medium

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES

Introduction to Heat and Mass Transfer. Week 12

6.2 Governing Equations for Natural Convection

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

Dimensionless Numbers

ENTROPY GENERATION IN HEAT AND MASS TRANSFER IN POROUS CAVITY SUBJECTED TO A MAGNETIC FIELD

Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection

Convective Mass Transfer

An analytical investigation into filmwise condensation on a horizontal tube in a porous medium with suction at the tube surface

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

MIXED CONVECTION HEAT TRANSFER FROM A PARTICLE IN SUPERCRITICAL WATER

Optimization of flue gas turbulent heat transfer with condensation in a tube

Problem 4.3. Problem 4.4

Shell Balances in Fluid Mechanics

Convection Workshop. Academic Resource Center

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

MECHANISM BEHIND FREE /NATURAL CONVECTION

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts

FORMULA SHEET. General formulas:

ENTROPY GENERATION ANALYSIS OF FREE CONVECTION FROM A CONSTANT TEMPERATURE VERTICAL PLATE USING SIMILARITY SOLUTION

ME 331 Homework Assignment #6

ENGR Heat Transfer II

Research Article Lie Group Analysis of Unsteady Flow and Heat Transfer over a Porous Surface for a Viscous Fluid


Heat Transfer Convection

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER

8.5 Film Condensation in Porous Media

Chapter 3 NATURAL CONVECTION

CONVECTIVE HEAT TRANSFER

Dipak P. Saksena Assistant Professor, Mechancial Engg. Dept.Institute of Diploma Studies.Nirmaunieversity

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Research Article Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel

THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL

INFLUENCE OF VARIABLE PERMEABILITY ON FREE CONVECTION OVER VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Thermal and Fluids in Architectural Engineering

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION

Heat and Mass Transfer Unit-1 Conduction

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

Parallel Plate Heat Exchanger

Heat Transfer with Phase Change

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE *

Steady MHD Natural Convection Flow with Variable Electrical Conductivity and Heat Generation along an Isothermal Vertical Plate

Principles of Convection

Y. L. He and W. Q. Tao Xi an Jiaotong University, Xi an, China. T. S. Zhao Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

ENTROPY GENERATION DUE TO EXTERNAL FLUID FLOW AND HEAT TRANSFER FROM A CYLINDER BETWEEN PARALLEL PLANES

UNSTEADY FREE CONVECTION BOUNDARY-LAYER FLOW PAST AN IMPULSIVELY STARTED VERTICAL SURFACE WITH NEWTONIAN HEATING

Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD EFFECT AND VARIATION IN BRINKMAN NUMBER

On the influence of tube row number for mixed convection around micro tubes

Department of Mathematics, Priyadarshini College of Engineering & Technology, Nellore , India

Research Article Entropy Generation Analysis in a Variable Viscosity MHD Channel Flow with Permeable Walls and Convective Heating

Flow and heat transfer over a longitudinal circular cylinder moving in parallel or reversely to a free stream

Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface

FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON- NEWTONIAN FLUID IN A POROUS MEDIUM

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

HEAT AND MASS TRANSFER. List of Experiments:

Influence of Heat Transfer Process in Porous Media with Air Cavity- A CFD Analysis

Transcription:

Mathematical Problems in Engineering, Article ID 7265, 8 pages http://dx.doi.org/.55/24/7265 Research Article Theoretical Analysis of Effects of Wall Suction on Entropy Generation Rate in Laminar Condensate Layer on Horizontal Tube Tong-Bou Chang,2 DepartmentofMechanicalandEnergyEngineering,NationalChiayiUniversity,No.3,SyuefuRoad,ChiayiCity6,Taiwan 2 Center of Energy Research & Sensor Technology, National Chiayi University, No. 3, Syuefu Road, Chiayi City 6, Taiwan Correspondence should be addressed to Tong-Bou Chang; tbchang@mail.ncyu.edu.tw Received 28 August 24; Revised November 24; Accepted 7 November 24; Published 4 December 24 Academic Editor: Hang Xu Copyright 24 Tong-Bou Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The effects of wall suction on the entropy generation rate in a two-dimensional steady film condensation flow on a horizontal tube are investigated theoretically. In analyzing the liquid flow, the effects of both the gravitational force and the viscous force are taken into account. In addition, a film thickness reduction ratio, S f, is introduced to evaluate the effect of wall suction on the thickness of the condensate layer. The analytical results show that, the entropy generation rate depends on the Jakob number Ja, the Rayleigh number Ra, the Brinkman number Br, the dimensionless temperature difference ψ, and the wall suction parameter S w. In addition, it is shown that in the absence of wall suction, a closed-form correlation for the Nusselt number can be derived. Finally, it is shown that the dimensionless entropy generation due to heat transfer, N T, increases with an increasing suction parameter S w,whereasthe dimensionless entropy generation due to liquid film flow friction, N F,decreases.. Introduction Film condensation on a horizontal tube has many thermal engineering applications, including chemical vapor deposition, distillation, and heat exchange. The problem of laminar film condensation flow was first investigated by Nusselt [], who considered the case of film condensation on a vertical plate. The results showed that a local balance existed between theviscousforceandtheweightofthecondensatefilm provided that three simplifying assumptions were satisfied; namely, () the condensate film was very thin, (2) the convective and inertial effects were very small, and (3) the temperature within the condensate layer varied linearly over the film thickness. In later studies, researchers investigated the laminar film condensation of quiescent vapors under more realistic assumptions [2 5]. Yang and Chen [6] investigatedthe effects of surface tension and ellipticity on laminar film condensation on a horizontal elliptical tube. The results showed that the heat transfer coefficient increased with an increasing surface tension force and tube ellipticity. Hu and Chen [7] investigated the problem of turbulent film condensation on an inclined elliptical tube and found that the heat transfer performance improved as the vapor velocity increased. Additionally,itwasshownthatacirculartuberesultedinahigher heat transfer coefficient than an elliptical tube. Irreversibilities due to heat transfer and friction inevitably exist in practical thermal systems. This phenomenon, referred to as entropy generation, reduces the energy available to perform work and should therefore be minimized. Bejan [8] proposed a method for minimizing entropy generation in such key applications as power generation, refrigeration, and energy conservation. Bejan [9] also conducted a second law thermodynamics analysis of the entropy generation minimization problem for single-phase convection heat transfer. The same author [] devised effective methods for minimizing entropy generation in heat transfer systems consisting of flat plates or cylinders placed in a crossflow. Saouli and Aïboud-Saouli [] performed a second law thermodynamic

2 Mathematical Problems in Engineering analysis of the convection heat transfer problem in singlephase falling liquid film flow along an inclined heated plate. In investigating the problem of heat transfer with phasechange, Adeyinka and Naterer [2] analyzed the entropy generation and energy availability in vertical film condensation heat transfer. The results indicated that entropy generation provides a useful parameter for optimizing two-phase systems. Dung and Yang [3] appliedtheentropygeneration minimization method proposed by Bejan in [8] to optimize film condensation heat transfer on a horizontal tube. Their results showed that the optimal group Rayleigh parameter exists over the parametric range investigated for horizontal tube at which the entropy is generated at a minimum rate. Li and Yang [4] applied the entropy generation minimization method to optimize the heat transfer performance of a horizontal elliptical cylinder in a saturated vapor flow. In a recent study, Chang and Wang [5] investigated the heat transfer characteristics and entropy generation rate of a condensate film on a horizontal plate and found that the overall entropy generation rate induced by the heat transfer irreversibility effect is equivalent to the Nusselt number. The problem of laminar film condensation with wall suction effects has been widely discussed in the literature [6 8]. In general, the results have shown that wall suction significantly enhances the condensation heat transfer performance. However, the literature lacks a systematic investigation into the effects of wall suction on the entropy generation rate in laminar film condensation on a horizontal tube. Accordingly, the present study performs an analytical investigation into the effects of the Jakob number, Rayleigh number, Brinkman number, dimensionless temperature difference, and suction force on the dimensionless entropy generation rate for a horizontal tube in a stationary saturated vapor. Notably, in performing the analysis, the effects of both the gravitational force and the viscous force are taken into explicit account. 2. Analysis Consider a pure vapor in a saturated state condensing on a horizontal and permeable tube (see Figure ). Assume that the vapor has a uniform temperature T sat and the tube (with diameter D) hasaconstantwalltemperaturet w.ift sat is higher than T w, a thin liquid condensate-layer is formed on the surface of the tube. In analyzing the heat transfer characteristicsofthecondensatefilm,thesameassumptionsasthose used by Rohsenow [9] are applied; namely, () the condensate film flow is steady and laminar, and thus the effects of inertia and convection can be ignored (i.e., a creeping film flow is assumed); (2) the wall temperature, vapor temperature, and properties of the dry vapor and condensate, respectively, are constant; and (3) the condensate film has negligible kinetic energy. Consequently, the governing equations for the condensate layer can be formulated as follows: continuity equation: u x + V =; () y g Wall temperature T w E in x δ E suckecond x+dx E out Wall suction V w δ D momentum equation: energy equation: θ y Figure : Physical model. Vapor temperature T sat x Liquid-vapor interface =μ 2 u y 2 +(ρ ρ V)gsin θ; (2) =α 2 T y 2. (3) In () (3),the(x, y) coordinates are local coordinates and are used specifically to simplify the governing equations. The local coordinate frame (x, y) and cylindrical coordinate frame (r, θ) are related as x = (D/2)θ and y = r (D/2). The boundary conditions are given as follows: atthetubesurface,thatis,y=, V = V w, T = T w ; (4) at the liquid-vapor interface, that is, y=δ, T=T sat. (5)

Mathematical Problems in Engineering 3 Integrating the momentum equation given in (2) using the boundary conditions given in (4) and (5), the velocity distribution within the condensate film is obtained as u= (ρ ρ V)gsin θ μ (δy 2 y2 ). (6) Meanwhile, integrating the energy equation given in (3) using the boundary conditions given in (4) and (5),thetemperatureprofileisobtainedas T=T w +ΔT y δ. (7) Utilizing the second law approach proposed by Bejan [8], the local entropy generation equation for the convection heat transfer within the condensate film is given as = k T 2 w = T +S F, [( T x ) 2 +( T y ) 2 ]+ μ T w ( u y ) 2 where k is the thermal conductivity of the liquid condensate. The local entropy generation equation contains two components, namely, the entropy generation due to heat transfer, T, and the entropy generation due to fluid friction, S F.From are defined, respectively, as (8), T and S F (8) T = k Tw 2 [( T 2 x ) +( T 2 y ) ], (9) F = μ T w ( u y ) 2. () Substitutingthe velocitydistributionin (6) and the linear temperature profile in (7)into (9) and (),the local entropy generation due to heat transfer and fluid friction can be rewritten, respectively, as T = k Tw 2 ( ΔT 2 δ ), F = [(ρ ρ V)gsin θ] 2 (δ y) 2. T w μ () Integrating () with respect to y, the local entropy generation across the film thickness is obtained as S F = δ S δ = dy = S T +S F, S δ T = T dy = k ΔT 2 Tw 2 δ, F dy = [(ρ ρ V)gsin θ] 2 δ 3. 3T w μ (2) Integrating (2) with respect to θ, the total entropy generation within the condensate film can be derived as follows: S= S dθ = S T +S F, (3) S T = k T 2 w S F = ΔT 2 δ dθ = kδt2 T 2 w [(ρ ρ V )gsin θ] 2 δ 3 dθ 3T w μ = [(ρ ρ V)g] 2 3T w μ δ 3 sin 2 θdθ. dθ, (4) δ (5) Let the characteristic entropy generation rate be defined as S = k 2 D (ΔT ). (6) T w The dimensionless total entropy generation can then be calculated as N= S S =N T +N F. (7) Substituting (6) and (7) into (3) (5), thedimensionless entropy generation numbers for the heat transfer and fluid friction irreversibilities are obtained, respectively, as follows: D N T = δ dθ, N F = DT w [(ρ ρ V )g] 2 3kμΔT 2 δ 3 sin 2 θdθ. (8) Let the following dimensionless parameters be introduced: u = (ρ ρ V)g D 2, Br = μu2 μ kδt, Ψ = ΔT. (9) T w Furthermore, let the dimensionless liquid film thickness be defined as δ = δ D. (2) Substituting (9) into (8) and using (2),thedimensionless entropy generation number equations can be rewritten as N T = dθ, (2) δ N F = Br 3Ψ (δ ) 3 sin 2 θdθ. (22) However, N T and N F cannot yet be derived since δ is unknown.

4 Mathematical Problems in Engineering To solve δ, assume that the first law of thermodynamics and the mass conservation equation are coupled in the governing equations. The schematic presented at the top of Figure shows the energy balance within a small control volume of liquid condensate extending from x to x+dx.the energy flow entering the control volume is given as E in = { δ ρu(h fg + Cp(T sat T))dy} x, while that exiting the control volume is given as E out ={ δ ρu(h fg + Cp(T sat T))dy} x+dx. Furthermore, the net energy sucked out of the condensate layer is equal to E suck =[ρ(h fg + CpΔT)V w ]dx, while the heat transferred into the condensate layer as a result of conduction is equal to E cond = k( T/ y)dx. Therefore, the overall energy balance in the liquid film, that is, E in E out E suck = E cond, can be expressed as δ d dx { ρu (h fg + Cp (T sat T))dy}dx +[ρ(h fg + CpΔT) V w ]dx=k T y dx, (23) where the first term on the left-hand side of (23) represents the net energy flux across the liquid film (i.e., from x to x+ dx), while the second term represents the net energy sucked outofthecondensatelayer. Substituting (6) and (7) into (23) andusingthecorrelation dx = (D/2)dθ, (23) canberewrittenas ρ(ρ ρ V )g(h fg + (3/8) CpΔT) 3μ +ρ(h fg + CpΔT) V w =k ΔT δ. 2d Ddθ {δ3 sin θ} (24) For analytical convenience, let the following dimensionless parameters be introduced: Ja = CpΔT h fg + (3/8) CpΔT, μcp Pr = k, Assuming that the wall suction effect is ignored (i.e., S w =), (26) can be expressed as δ d S w = dθ ((δ S w = )3 sin θ) = 3 Ja 2 Ra, (28) where δ Sw= is the dimensionless local liquid film thickness in the absence of wall suction. Using the separation of variables method, the analytical solution for the dimensionless local film thickness can be derived as δ S w = = sin /3 θ(2 Ja Ra ) /4 θ /4 ( sin /3 θdθ). (29) The value of δ Sw = along the surface of the horizontal tubecanthenbecalculatedbyintegrating θ sin/3 θdθ. Let the effect of wall suction on the thickness of the condensate layer be characterized by the following film thickness reduction ratio: S f = δ δ. (3) Sw = Since δ δ Sw =,thevalueofs f falls within the range of S f.substituting(3) into (28) the following equation for S f is obtained: 3(δ S w = )4 sin θ( S f ) 3 df dθ +δ d S w = dθ ((δ S w = )3 sin θ) (S 4 f 4S3 f +6S2 f 4S f) + 3 2 δ S w = ( S f) S w =. (3) Setting θ to, the initial condition, S f (), is obtained as Ra = ρ(ρ ρ V)gPr D 3 μ 2, Re w = ρv wd μ, S w =(+ 5 8 Ja) Re Pr w Ra. Substituting (25) and (2) into (24) yields the following: (25) AS 4 f () +BS3 f () +CS2 f () +DS f () +E=, (32) where A=(δ S w =,θ= )4, B= 4A, δ d dθ (δ 3 sin θ) + 3 2 S wδ = 3 Ja 2 Ra. (26) The boundary conditions for the liquid film thickness are given as dδ =, dθ at θ=, (27a) δ, at θ=. (27b) C=6A, D= 4A 3 2 (δ S w =,θ= ) S w, E= 3 2 (δ S w =,θ= ) S w. (33) The exact value of S f () in (32) can be determined using the bisection method [2]. The variation of S f in the θ direction can then be obtained by substituting S f () and (29)

Mathematical Problems in Engineering 5 into (3). Furthermore, the dimensionless local liquid film thickness can be derived as δ (θ) =( S f ) δ S w = where =( S f ) sin /3 θ(2 Ja Ra ) /4 θ /4 ( sin /3 θdθ). In general, the local Nusselt number is given by (34) Nu θ = h θd k, (35) h θ = k δ. (36) Substituting (34) into (35), the local Nusselt number can be rewritten as Nu θ = δ (θ) =( Ra /4 sin /3 θ(4 θ Ja ) sin/3 θdθ) /4. ( S f ) The mean Nusselt number can then be derived as Nu = δ (θ) dθ = /4 (Ra Ja ) sin /3 θ(4 θ sin/3 θdθ) /4 ( S f ) dθ. (37) (38) Comparing (2) and (38), the dimensionless entropy generation due to heat transfer, N T,canbeobtainedas 3. Results and Discussion N T = dθ = Nu. (39) δ In the present study, the working fluid was assumed to be water vapor (one of the most commonly used liquids in engineering applications). Moreover, for the case where the wall section effect was ignored (i.e., the suction Reynolds number velocity Re w was set equal to zero), the mean Nusselt number was derived by substituting S f =into (38);thatis, Nu = /4 Sw = (Ra Ja ) θ /4 sin /3 θ(4 sin /3 θdθ) dθ. (4) In addition, an explicit formulation for the mean Nusselt number was obtained by using a simple numerical method [2] to deal with the integration term sin/3 θ(4 θ sin/3 θdθ) /4 dθ in (32), yielding /4 Nu Sw =.224 (Ra = Ja ). (4) Yangand Chen[6] used a novel transformation method to investigate the problem of film condensation on a horizontal elliptical tube in the absence of wall suction. However, the parameters defined in [6] differfromthoseusedinthe current analysis. Therefore, to enable a direct comparison to be made with the present results, the formulations presented in [6] should be transformed from their original formats and expressed in terms of the current parameters. Based on the derivations presented in [6], the mean Nusselt number for a circular tube should be transformed as Nu =.225 ( Ra Ja ) /4. (42) It is evident that a good agreement exists between (4) and (42). Thus, the basic validity of the analytical model proposed in the present study is confirmed. As shown in (7), the dimensionless entropy generation in the condensate layer on the horizontal tube is induced by both heat transfer and liquid film flow friction. In (9), u,br, and Ψ are defined as u = ((ρ ρ V )g/μ)d 2,Br=μu 2 /kδt, and Ψ= ΔT/T w,respectively.itthusfollowsthat(br/ψ) = ((ρ ρ V ) 2 g 2 D 4 /μkt w ). For the water vapor considered in the present study, Br/ψ has a value of 5 given a tube diameter of D=3/8inches and a temperature of C. Figure 2 shows that the dimensionless entropy generation caused by heat transfer, N T, increases with an increasing suction parame-ter, S w. This finding is reasonable since the thickness of the liquid film reduces with an increasing suction effect and therefore improves the heat transfer performance. Moreover, the finding is consistent with (38) and (39),whichshowthatN T is equal to times the mean Nusselt number Nu, and Nu increases with increasing S f. In addition, Figure 2 shows that the dimensionless entropy generation due to heat transfer, N T,isproportionalto(Ra/Ja) /4,aspredictedbyboth(4) and (42). Figure 3 shows that the dimensionless entropy generation duetoliquidfilmflowfriction,n F, decreases with an increasing suction parameter S w. Again, this finding is reasonable since as the suction parameter increases, a greater amount of liquid is sucked into the porous tube. Consequently, the quantity of liquid condensate on the tube surface is reduced, and thus the entropy generation caused by liquid film flow friction also reduces. Figure 3 shows that the dimensionless entropy generation due to liquid film flow friction, N F, reduces as (Ra/Ja) /4 increases (i.e., an opposite tendency to that observed for N T (or Nu)).Thisresultisreasonablesince alargervalueofn T (or Nu) implies the existence of a thinner condensate film on the tube surface and hence a lower liquid film flow friction. As discussed above, the dimensionless entropy generation due to heat transfer increases with increasing (Ra/Ja), whereas the dimensionless entropy generation due to liquid

6 Mathematical Problems in Engineering 2 9 8 8 N T 6 N 7 4 6 2 3 5 7 9 2 4 6 8 S w =.2 S w =. Ra/Ja S w =.5 S w =. Br/Ψ = 5. Figure 2: Dimensionless entropy generation due to heat transfer versus Ra/Ja as function of S w. N F 5 2.5.2..5.2. Br/Ψ = 5. 3 5 7 9 2 4 6 8 S w =.2 S w =. Ra/Ja S w =.5 S w =. Figure 3: Dimensionless entropy generation due to liquid film flow friction versus Ra/Ja as function of S w. 5 2 3 4 5 6 7 8 9 2 3 4 Ra/Ja S w =.2 S w =. Minimum point S w =.5 S w =. Br/Ψ = 5. Figure 4: Dimensionless total entropy generation versus Ra/Ja as function of S w. 5.25, and 3.92 given wall suction parameter values of S w =,.5,., and.2, respectively. The corresponding minimum values of N are determined from (7) to be 5.233, 5.226, 5.22, and 5.28, respectively. Let the respective effects of the liquid film flow friction irreversibility and heat transfer irreversibility on the entropy generation rate be quantified by an irreversibility ratio N F / N T. Clearly, the entropy generation rate is dominated by the liquid film flow friction irreversibility when N F /N T >,but by the heat transfer irreversibility when N F /N T <. Figure 5 shows that, for wall suction parameters of S w =,.5,., and.2, the contribution of the heat transfer irreversibility to the entropy generation rate is greater than that of the liquid film flow friction irreversibility (i.e., N F /N T < ) when Ra/Ja 2.9, 2.54, 2.28, and.88, respectively. In other words, a higher value of S w results in a higher heat transfer performance and therefore broadens the range of Ra/Ja over which the heat transfer irreversibility dominates. In practical applications, Ra/Ja has a value of more than. Thus, as shown in Figure 5, the total entropy generation rate is dominated by the heat transfer process between the saturated vapor and the wall. 4. Conclusion film flow friction decreases. As a result, it follows that there should exist a minimum value of the dimensionless total entropy generation, N,atacertainvalueof(Ra/Ja). Figure 4 shows the variation of N with (Ra/Ja) as a function of the wall suction parameter S w for a constant Br/ψ = 5.Itisseenthat the minimum value of N occurs at (Ra/Ja) opt = 8.56, 6.7, This study has examined the entropy generation rate in a laminar condensate film on a horizontal tube with wall suction effects. It has been shown that the mean Nusselt number varies as a function of Ra/Ja. Moreover, the dimensionless entropy generation number induced by heat transfer irreversibility is equal to times the mean Nusselt number, while

Mathematical Problems in Engineering 7 N F /N T 2.8.6.4.2.8.6.4.2 Br/Ψ = 5. 2 4 6 8 2 4 6 8 2 S w =.2 S w =. Ra/Ja S w =.5 S w =. Figure 5: Irreversibility ratio versus Ra/Ja as function of S w. the dimensionless entropy generation number induced by film flow friction irreversibility is equal to (Br/3Ψ) (δ ) 3 sin 2 θdθ. Finally, it has been shown that the presence of a wall suction effect reduces the thickness of the liquid film, thereby increasing the heat transfer coefficient and entropy generationduetoheattransferbutdecreasingtheentropy generation due to liquid film flow friction. Nomenclature Br: Brinkman number defined in (9) Cp: Specific heat at constant pressure D: Diameterofcirculartube g: Acceleration of gravity h: Heat transfer coefficient h fg : Heatofvaporization Ja: Jakob number defined in (25) k: Thermalconductivity N: Dimensionless overall entropy generation number defined in (7) Nu: Nusselt number defined in (35) Pr: Prandtl number defined in (25) Ra: Rayleigh number defined in (25) Re w : Suction Reynolds number defined in (25) : Local entropy generation rate defined in (8) S: Overall entropy generation rate defined in (3) S f : Film thickness reduction ratio defined in (3) S : Characteristic entropy generation rate defined in (6) S w : Suction parameter defined in (25) T: Temperature ΔT: Saturation temperature minus wall temperature u: Velocitycomponentinx-direction V: Velocitycomponentiny-direction. Greek Symbols δ: Condensate film thickness μ: Liquid viscosity ρ: Liquid density θ: Anglemeasuredfromtopoftube ψ: Dimensionless temperature difference defined in (9). Superscripts : Average quantity : Dimensionless variable. Subscripts min: Minimum quantity sat: Saturation property w: Quantityatwall. Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper. Acknowledgment This study was supported by the National Science Council of Taiwan under Grant no. NSC -222-E-28-6. References [] W. Nusselt, Die oberflachen Kondensation des Wasserdampes, Zeitsehrift des Vereines Deutscher Ingenieure, vol.6,no.2,pp. 54 546, 96. [2]V.D.Popov, HeatTransferduringvaporcondensationona horizontal surfaces, TrudyKiev. Teknol.InstPishch Prom.,vol., pp. 87 97, 95. [3] G. Leppert and B. Nimmo, Laminar film condensation on surface normal to body or inertial forces, Transactions of the ASME, Heat Transfer,vol.8,pp.78 79,968. [4] B. Nimmo and G. Leppert, Laminar film condensation on a finite horizontal surface, in Proceedings of the 4th International Heat Transfer Conference, pp. 42 43, 97. [5]T.Shigechi,N.Kawae,Y.Tokita,andT.Yamada, Filmcondensation heat transfer on a finite-size horizontal plate facing upward, JSME Series B, vol. 56, pp. 25 2, 99. [6] S. A. Yang and C. K. Chen, Role of surface tension and ellipticity in laminar film condensation on a horizontal elliptical tube, International Heat and Mass Transfer,vol.36,no.2, pp.335 34,993. [7]H.-P.HuandC.-K.Chen, Simplifiedapproachofturbulent filmcondensationonaninclinedellipticaltube, International Heat and Mass Transfer,vol.49,no.3-4,pp.64 648, 26.

8 Mathematical Problems in Engineering [8] A. Bejan, Entropy generation minimization: the method and its applications, in Proceedings of the ASME-ZSITS International Thermal Science Seminar, pp.7 7,Bled,Slovenia,June 2. [9] A. Bejan, Entropy Generation Minimization, chapter4,crc Press, Boca Raton, Fla, USA, 996. [] A. Bejan, A study of entropy generation in fundamental convective heat transfer, Heat Transfer, vol.,no. 4, pp. 78 725, 979. [] S. Saouli and S. Aïboud-Saouli, Second law analysis of laminar falling liquid film along an inclined heated plate, International Communications in Heat and Mass Transfer, vol.3,no.6,pp. 879 886, 24. [2] O. B. Adeyinka and G. F. Naterer, Optimization correlation for entropy production and energy availability in film condensation, International Communications in Heat and Mass Transfer, vol.3,no.4,pp.53 524,24. [3] S.-C. Dung and S.-A. Yang, Second law based optimization of free convection film-wise condensation on a horizontal tube, International Communications in Heat and Mass Transfer, vol. 33,no.5,pp.636 644,26. [4] G.-C. Li and S.-A. Yang, Thermodynamic analysis of free convection film condensation on an elliptical cylinder, Journal of the Chinese Institute of Engineers,vol.29,no.5,pp.93 98, 26. [5] T.B.ChangandF.J.Wang, Ananalyticalinvestigationintothe Nusselt number and entropy generation rate of film condensation on a horizontal plate, Mechanical Science and Technology,vol.22,no.,pp.234 24,28. [6] T.-B. Chang, W.-Y. Yeh, and G.-L. Tsai, Film condensation on horizontal tube with wall suction effects, Mechanical Science and Technology,vol.23,no.2,pp.3399 346,2. [7] T.-B. Chang and W.-Y. Yeh, Theoretical investigation into condensation heat transfer on horizontal elliptical tube in stationary saturated vapor with wall suction, Applied Thermal Engineering, vol. 3, no. 5, pp. 946 953, 2. [8] T. B. Chang, Effects of surface tension on laminar filmwise condensation on a horizontal plate in a porous medium with suction at the wall, Chemical Engineering Communications, vol. 95, no. 7, pp. 72 737, 28. [9] W. M. Rohsenow, Heat transfer and temperature distribution in laminar film condensation, Transactions of the ASME, Heat Transfer,vol.78,pp.645 648,956. [2] M. L. James, G. M. Smith, and J. C. Wolford, Applied Numerical Methods for Digital Computation, Happer&Row,NewYork, NY, USA, 3rd edition, 985.

Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization