ISSN Article

Similar documents
Nomenclature. 1 Introduction

Combined Effect of Buoyancy Force and Navier Slip on Entropy Generation in a Vertical Porous Channel

Research Article Entropy Generation Analysis in a Variable Viscosity MHD Channel Flow with Permeable Walls and Convective Heating

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system

Entropy Generation in MHD Porous Channel Flow Under Constant Pressure Gradient

ENTROPY GENERATION ANALYSIS OF A REACTIVE HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL

Entropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling

Numerical Analysis of Laminar flow of Viscous Fluid Between Two Porous Bounding walls

MHD OSCILLATORY SLIP FLOW AND HEAT TRANSFER IN A CHANNEL FILLED WITH POROUS MEDIA

The Effect Of MHD On Laminar Mixed Convection Of Newtonian Fluid Between Vertical Parallel Plates Channel

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

ALEXANDRIA ENGINEERING JOURNAL. Accepted September 26 th 2016

DYNAMICAL ANALYSIS OF UNSTEADY POISEUILLE FLOW OF TWO-STEP EXOTHERMIC NON-NEWTONIAN CHEMICAL REACTIVE FLUID WITH VARIABLE VISCOSITY

Kabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India

Inherent Irreversibility of Hydromagnetic Third-Grade Reactive Poiseuille Flow of a Variable Viscosity in Porous Media with Convective Cooling

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate

Nonlinear Analysis: Modelling and Control, 2008, Vol. 13, No. 4,

Parash Moni Thakur. Gopal Ch. Hazarika

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Effect of Thermal Radiation on the Entropy Generation of Hydromagnetic Flow Through Porous Channel.

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

Numerical Analysis of MHD Flow of Fluid with One Porous Bounding Wall

Numerical study of entropy generation and melting heat transfer on MHD generalised non-newtonian fluid (GNF): Application to optimal energy

Unsteady MHD Couette Flow with Heat Transfer in the Presence of Uniform Suction and Injection

Numerical Study of Unsteady MHD Flow and Entropy Generation in a Rotating Permeable Channel with Slip and Hall Effects

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation

Corresponding Author: Kandie K.Joseph. DOI: / Page

THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER IN A CHANNEL WITH POROUS WALLS OF DIFFERENT PERMEABILITY

Influence of Magnetic Field on Couple Stress Flow through Porous Channel with Entropy Generation

COMBINED EFFECTS OF RADIATION AND JOULE HEATING WITH VISCOUS DISSIPATION ON MAGNETOHYDRODYNAMIC FREE CONVECTION FLOW AROUND A SPHERE

Effect of Magnetic Field on Steady Boundary Layer Slip Flow Along With Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

Entropy 2011, 13, ; doi: /e OPEN ACCESS

MIXED CONVECTION OF NEWTONIAN FLUID BETWEEN VERTICAL PARALLEL PLATES CHANNEL WITH MHD EFFECT AND VARIATION IN BRINKMAN NUMBER

A problem of entropy generation in a channel filled with a porous medium

Research Article Lie Group Analysis of Unsteady Flow and Heat Transfer over a Porous Surface for a Viscous Fluid

Application of Reconstruction of Variational Iteration Method on the Laminar Flow in a Porous Cylinder with Regressing Walls

A new approach for local similarity solutions of an unsteady hydromagnetic free convective heat transfer flow along a permeable flat surface

The University of the West Indies, St. Augustine, Trinidad and Tobago. The University of the West Indies, St. Augustine, Trinidad and Tobago

Problem 4.3. Problem 4.4

Radiative Mhd Stagnation Point Flow Over A Chemical Reacting Porous Stretching Surface With Convective Thermal Boundary Condition

Unsteady Boundary Layer Flow and Symmetry Analysis of a Carreau Fluid

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Influence of the Order of Chemical Reaction and Soret Effect on Mass Transfer of a Binary Fluid Mixture in Porous Media

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation

Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article

Available online at ScienceDirect. Procedia Materials Science 10 (2015 )

Natural Convection and Entropy Generation in a Porous Enclosure with Sinusoidal Temperature Variation on the Side Walls

International Journal of Pure and Applied Mathematics

Flow and Heat Transfer of Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching Sheet

NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER

Muhim Chutia * Department of Mathematics, Mariani College, Jorhat, Assam, , India. Nomenclature. address:

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX

LOCAL THERMAL NON-EQUILIBRIUM FORCED CONVECTION OF A THIRD GRADE FLUID BETWEEN PARALLEL STRETCHING PERMEABLE PLATES EMBEDDED IN A POROUS MEDIUM

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI

Hydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect

Unsteady Magnetohydrodynamic Free Convective Flow Past a Vertical Porous Plate

Numerical Solution of Mass Transfer Effects on Unsteady Flow Past an Accelerated Vertical Porous Plate with Suction

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014

Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate

Unsteady Laminar Free Convection from a Vertical Cone with Uniform Surface Heat Flux

Chemical reaction Soret and Dufour Effect on Micropolar Fluid

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

MIXED CONVECTION SLIP FLOW WITH TEMPERATURE JUMP ALONG A MOVING PLATE IN PRESENCE OF FREE STREAM

Unsteady MHD Free Convection Flow past an Accelerated Vertical Plate with Chemical Reaction and Ohmic Heating

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel

Analysis of Transient Natural Convection flow past an Accelerated Infinite Vertical Plate

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Buoyancy Effects on Unsteady MHD Flow of a Reactive Third-Grade Fluid with Asymmetric Convective Cooling

Couette Flow of Two Immiscible Dusty Fluids between Two Parallel Plates with Heat Transfer

Forced Convection in a Cylinder Filled with Porous Medium, including Viscous Dissipation Effects

Hydromagnetic stagnation point flow over a porous stretching surface in the presence of radiation and viscous dissipation

Principles of Convection

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady a stretching sheet through porous media

PHYSICAL MECHANISM OF CONVECTION

EFFECT OF RADIATION ON MHD MIXED CONVECTION FLOW PAST A SEMI INFINITE VERTICAL PLATE

The Effect of Suction and Injection on the Unsteady Flow Between two Parallel Plates with Variable Properties

Study of Couette and Poiseuille flows of an Unsteady MHD Third Grade Fluid

Numerical Study on Unsteady Free Convection and Mass Transfer Flow past a Vertical Porous Plate

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)

Finite Difference Solution of Unsteady Free Convection Heat and Mass Transfer Flow past a Vertical Plate

Effect of Thermal Radiation on the Casson Thin Liquid Film Flow over a Stretching Sheet

On steady hydromagnetic flow of a radiating viscous fluid through a horizontal channel in a porous medium

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL

On Spectral Relaxation Method for Entropy Generation on a MHD Flow and Heat Transfer of a Maxwell Fluid

Flow of a micropolar fluid in channel with heat and mass transfer

Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection

ENTROPY GENERATION ANALYSIS OF FREE CONVECTION FROM A CONSTANT TEMPERATURE VERTICAL PLATE USING SIMILARITY SOLUTION

Introduction. Page 1 of 6. Research Letter. Authors: Philip O. Olanrewaju 1 Jacob A. Gbadeyan 1 Tasawar Hayat 2 Awatif A. Hendi 3.

Influence of chemical reaction, Soret and Dufour effects on heat and mass transfer of a binary fluid mixture in porous medium over a rotating disk

MICROPOLAR NANOFLUID FLOW OVER A MHD RADIATIVE STRETCHING SURFACE WITH THERMAL CONDUCTIVITY AND HEAT SOURCE/SINK

Numerical Analysis of Magneto-Hydrodynamic Flow of Non-Newtonian Fluid Past Over a Sharp Wedge in Presence of Thermal Boundary Layer

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient

Transcription:

Entropy 23, 5, 28-299; doi:.339/e5628 OPEN ACCESS entropy ISSN 99-43 www.mdpi.com/journal/entropy Article Analysis of Entropy Generation Rate in an Unsteady Porous Channel Flow with Navier Slip and Convective Cooling Tirivanhu Chinyoka, * and Oluwole Daniel Makinde 2 Center for Research in Computational and Applied Mechanics, University of Cape Town, Rondebosch 77, South Africa; E-Mail: tchinyok@vt.edu 2 Institute for Advanced Research in Mathematical Modelling and Computations, Cape Peninsula University of Technology, P. O. Box 96, Bellville 7535, South Africa; E-Mail: makinded@cput.ac.za * Author to whom correspondence should be addressed; E-Mail: tchinyok@vt.edu; Tel. +27-2-65-398 Fax. +27-2-65-2334. Received: 3 April 23; in revised form: 6 May 23 / Accepted: 2 May 23 / Published: 28 May 23 Abstract: This study deals with the combined effects of Navier Slip, Convective cooling, variable viscosity, and suction/injection on the entropy generation rate in an unsteady flow of an incompressible viscous fluid flowing through a channel with permeable walls. The model equations for momentum and energy balance are solved numerically using semi-discretization finite difference techniques. Both the velocity and temperature profiles are obtained and utilized to compute the entropy generation number. The effects of key parameters on the fluid velocity, temperature, entropy generation rate and Bejan number are depicted graphically and analyzed in detail. Keywords: permeable channel wall; convective cooling; variable viscosity; Navier slip; entropy generation; Bejan number. Introduction The cornerstone in the field of heat transfer and thermal design is the second law analysis and its design-related concept of entropy generation minimization. The foundation of knowledge of entropy production goes back to Clausius and Kelvin s studies on the irreversible aspects of the Second Law

Entropy 23, 5 282 of Thermodynamics [ 4]. Since then the theories based on these foundations have rapidly developed. However, the entropy production resulting from combined effects of velocity and temperature gradients has remained untreated by classical thermodynamics, which has motivated many researchers to conduct analyses of fundamental and applied engineering problems based on second law analyses. Entropy generation is associated with thermodynamic irreversibility, which is common in all types of heat transfer processes, namely conduction, convection and radiation. In thermodynamical analysis, the fundamental principle remains the improvement of the relevant thermal systems to mitigate against energy losses and hence fully optimize the energy resources. Since the pioneering work of Bejan [ 4], widespread research has been conducted on entropy generation analysis [5 7]. The work of Chinyoka [8] introduced uniform suction/injection at the walls as a means of mitigating the thermal effects of highly exothermic, reactive viscoelastic fluids. Our current work demonstrates that such an intervention also works in reducing heat generation in unsteady porous channel flows with Navier slip and convective cooling. Similarly, the work of Ikenna and Chinyoka [9] investigated the effects of wall slip at the channel walls on the heat transfer characteristics in reactive viscoelastic flows. It was shown in [9] that presence of wall slip enhanced heat build-up within the channel flow; our current results lead to similar conclusions. The pioneering works of Aziz [], Makinde and Aziz [], and the references therein introduced the idea of using the convective boundary conditions in boundary layer flows. e adopt such boundary conditions in the current work. Makinde [2,3] investigated the thermal effects of reactive viscous flows through channels filled with porous media under isothermal wall conditions. As noted, several studies involving heat and mass transfer in Newtonian and non-newtonian fluids [4 6] have been conducted but most lack a systematic and rational treatment of the thermodynamics of the problem with respect to the combined effects of porous walls, wall slip, unsteadiness, variable viscosity and asymmetric convective boundary conditions on the flow system. The objective of the present work is to study the unsteady flow of a reactive variable viscosity fluid between two parallel porous plates acted upon by nonconstant pressure. Both the lower and upper walls of the channel are subjected to asymmetric convective heat exchange with the ambient and allow for uniform suction/injection in the transverse direction. The mathematical formulation of the problem is established in Section 2. In Section 3 the semi-implicit finite difference technique is implemented for the solution process of the coupled nonlinear problem. Graphical results are presented and discussed qualitatively and quantitatively with respect to various parameters embedded in the system in Section 4. 2. Mathematical Model e consider unsteady flow of an incompressible viscous fluid through a channel with permeable walls, see Figure. It is assumed that the fluid is injected uniformly at a constant rate into the channel at the lower wall and fluid suction occurs at the upper wall at the same rate.

Entropy 23, 5 283 Figure. Schematic diagram of the problem. u =, v = V, T = T a u =, v = V, T = T a ȳ x ȳ = h (suction) ȳ = (injection) Under these assumptions, the governing equations for the momentum and energy balance in one dimension can be written as follows: ( u ρ t + V u ) = P ȳ x + ( µ(t ) u ) () ȳ ȳ and ( T ρ c p t + V T ) = k 2 T ȳ ȳ + µ(t ) 2 ( ) 2 u (2) ȳ The appropriate initial and boundary conditions are: u(ȳ, ) =, T (ȳ, ) = T (3) β u(, t) = µ(t ) u ȳ (, t), β 2 u(h, t) = µ(t ) u ȳ (h, t), k T ȳ (, t) = γ [T a T (, t)] (4) k T ȳ (, t) = γ 2 [T (h, t) T a ] (5) where h is the channel width, u is the velocity of the fluid, P is the fluid pressure, V is the uniform suction/injection velocity at the channel walls, k is the thermal conductivity coefficient, ρ is the fluid density, c p is the specific heat at constant pressure, γ is the lower wall heat transfer coefficient, γ 2 is the upper wall heat transfer coefficient, β is the lower wall slip parameter, β 2 is the upper wall slip parameter, T is the temperature and T a is the ambient temperature. The temperature dependant viscosity ( µ) can be expressed as µ(t ) = µ e b(t T ) (6)

Entropy 23, 5 284 where b is a viscosity variation parameter and µ is the initial fluid dynamic viscosity at temperature T. e introducing the following non-dimensional quantities: = ȳ h, t = V t h, X = x a, = u V, = T T, P = T a T Re = ρ h V, Pr = µ c p µ k P h µ V, = γ h k, = γ 2h k, G = P X µ = µ µ, m = b(t a T ), λ = µ h β, = µ h β 2, Ec = V 2 c p (T a T ) (7) Substituting Equation (8) into Equations () (6), we obtain ( Re t + ) = G + e m 2 2 Re Pr ( t + ) with the initial and boundary conditions given as me m (8) ( ) 2 = 2 + Ec Pr (9) 2 (, ) =, (, ) = () m(,t) (, t) = λ e (, t), m(,t) (, t) = e (, t), (, t) = [(, t) ] () (, t) = [ (, t)] (2) where m is the viscosity variation parameter, λ is the lower wall slip parameter, is the upper wall slip parameter, G is the pressure gradient parameter, Re is the Reynolds number, Pr is the Prandtl number, Ec is the Eckert number, is the lower wall Biot number, and is the upper wall Biot number. In the Section 4, the coupled nonlinear boundary value problem represented by Equations (8) (9) together with their initial and boundary conditions () (2) are solved numerically using semi-discretization finite difference techniques. 3. Entropy Analysis Following Bejan [], Mahmud and Fraser [7], the local entropy generation rate for a viscous incompressible fluid is given as E G = k ( ) T + µ ( ) 2 ū (3) T 2 ȳ T ȳ The first term in Equation (3) is the irreversibility due to heat transfer and the second term is the entropy generation due to viscous dissipation and third term is due to magnetic field. In dimensionless form, Equation (3) becomes, Ns = h2 T 2 E G k(t a T ) 2 = ( ) 2 Br e m + Ω ( ) 2 (4)

Entropy 23, 5 285 where Ω = (T a T )/T is the temperature difference parameter and Br = Ec Pr is the Brinkmann number. Let ( ) 2 ( ) 2 Br e m u N =, N 2 =, Φ = N 2 (5) r Ω r N e then define the Bejan number as Be = N N s = + Φ where Φ is the irreversibility ratio. Bejan number ranges from to. The limit of fluid friction irreversibility dominant effects is given by Be =, while Be = is the limit where the irreversibility due to heat transfer dominates the flow system. 4. Numerical Solution Our numerical algorithm is based on the semi-implicit finite difference scheme [8,9,7 2]. Implicit terms are taken at the intermediate time level (N + ξ) where ξ. The discretization of the governing equations is based on a linear Cartesian mesh and uniform grid on which finite-differences are taken. e approximate both the second and first spatial derivatives with second-order central differences. The equations corresponding to the first and last grid points are modified to incorporate the boundary conditions. The semi-implicit scheme for the velocity component reads: Re ( t + ) [ ] (N) (N) 2 m(n) = G + e (N+ξ) m + me (7) 2 In Equation (7) it is understood that #/ t := (# (N+) # (N) )/ t. The equation for (N+) then becomes: (6) where r (N+) j + (Re + 2r ) (N+) j r (N+) j+ = explicit terms (8) r = ξ t 2 exp( m) The solution procedure for (N+) thus reduces to inversion of tri-diagonal matrices, which is an advantage over a full implicit scheme. The semi-implicit integration scheme for the temperature equation is similar to that for the velocity component. Unmixed second partial derivatives of the temperature are treated implicitly: Re Pr The equation for (N+) thus becomes: r (N+) j ( t + ) ( ) 2 (N) = 2 2 (N+ξ) + Ec Pr (N) (9) + (Re Pr + 2r) (N+) j r (N+) j+ = explicit terms (2)

Entropy 23, 5 286 where r = ξ t/ 2. The solution procedure again reduces to inversion of tri-diagonal matrices. The schemes (8 and 2) were checked for consistency. For ξ =, these are first-order accurate in time but second order in space. The schemes in Chinyoka [9] have ξ = /2, which improves the accuracy in time to second order. As in Chinyoka [8,9,2] we, however, use ξ = here so that we are free to choose larger time steps and still converge to the steady solutions. 5. Results and Discussion Unless otherwise stated, we employ the parameter values: G =, Pr =.7, λ =., =., =., =. m =., Ω =., =., t =., Re =., t = 5. These will be the default values in this work. In the succeeding graphics, if any of these parameter values is not explicitly mentioned, it will be understood that such parameters take on the default values. 5.. Transient and Steady Flow Profiles e display the transient solutions in Figure 2. The figures show a transient increase in both fluid velocity, Figure 2a, and temperature, Figure 2b, until a steady state is reached. Figure 2. Transient and steady state profiles..22.2.8.2. t =. t =.5 t =. t = 5. t =..6.4.2.9.8.7.6..8.6 t =. t =.5 t =. t = 5. t =..5.4.3.4 y.2 5.2. Code Validation The steady flow case with m = is readily amenable to analytical treatment. e demonstrate in this section that our numerical scheme accurately reproduces this analytic solution. The steady equation for the velocity subject to m = is given by Re d d = G + d2 d 2 (2)

Entropy 23, 5 287 with boundary conditions given as The analytic solution reads: where for example, d () = λ d (), () = λ d 2 () (22) d () = C exp(re ) + G Re + C (23) C = G( + λ ) Re( exp(re) + Re exp(re) λ Re) C = λ (C Re + G/Re) C A comparison plot of the exact solution and the corresponding numerical solution (obtained at t = ) is given in Figure 3. Figure 3. Analytic and numerical solution: default values, λ = =..9 Numerical Exact.9 Numerical Exact.8.8.7.7.6.6.5.5.4.4.3.3.2.2...4.6.8..2.4.6.8.2.4.6.8..2.4 5.2.. Parameter Dependence of Solutions The response of the velocity and temperature to varying values of the Prandtl number (Pr) is illustrated in Figure 4. Larger values of the Prandtl number correspondingly increase the strength of the heat sources in the temperature equation and hence in turn increases the overall fluid temperature as clearly illustrated in Figure 4b. The increased temperature leads to decreased fluid viscosity and hence to higher fluid velocities as illustrated in Figure 4a.

Entropy 23, 5 288 Figure 4. Effects of the Prandtl number, Pr..26 2.5.24.22.2.8 2 Pr =.7 Pr =. Pr = 3. Pr = 5. Pr = 7..6.4.2.5..8 Pr =.7 Pr =. Pr = 3. Pr = 5. Pr = 7..6 The response of the velocity and temperature to varying values of the Reynolds number (Re) is illustrated in Figure 5. Figure 5. Effects of the Reynolds number, Re..22.2.8.5.4.3 Re =. Re =. Re = 2. Re = 3. Re = 4..6.4.2..2...8.6.4 Re =. Re =. Re = 2. Re = 3. Re = 4..9.8.7.2.6 Larger values of the Reynolds number correspond to higher suction/injection strength and hence clearly decreases the axial fluid velocity as illustrated in Figure 5a. The decreased velocity leads to decreased heat source strength and hence to lower fluid temperature as illustrated in Figure 5b. The trends shown in Figures 4 and 5 in which the velocity and temperature either both increase or decrease

Entropy 23, 5 289 together will be reproducible throughout our investigations and hence the explanations already given will not be repeated. The response of the velocity and temperature to varying values of the viscosity parameter (m) is illustrated in Figure 6. Figure 6. Effects of the viscosity parameter, m. 2.8.8.7.6.4.2 m =. m =. m =.5 m =.8 m =..6.5 m =. m =. m =.5 m =.8 m =..8.4.6.3.4.2.2. As expected, both velocity and temperature increase with increasing viscosity parameter (i.e., with decreasing fluid viscosity). The effects of the wall Biot numbers on the velocity and temperature profiles is illustrated in Figures 7 and 8. Figure 7. Effects of the lower wall Biot number ( )..22.5.2.8.6.4. =. =.5 = = 2 = 5.2..8 =. =.5 = = 2 = 5.5.6

Entropy 23, 5 29 Figure 8. Effects of the upper wall Biot number ( )..22.5.2.8.6. Bi =. 2 Bi =.5 2 =.4 = 2.2 Bi =. 2 =.5 =.5 = 5. = 2 = 5.8.6 As seen from the temperature boundary conditions (2), higher Biot numbers mean correspondingly higher degrees of convective cooling at the channel walls, thus leading to lower temperatures at the channel walls and hence also in the bulk fluid. The overall temperature profiles thus decrease with increasing Biot number as the bulk fluid continually adjusts to the lower wall temperatures. The response of the velocity and temperature to varying values of the Eckert number (Ec) is illustrated in Figure 9. Figure 9. Effects of the Eckert number, (Ec)..5.45.4.35 Ec =. Ec =.8 Ec =.5 Ec = 2. Ec = 2.5 8 7 6 Ec =. Ec =.8 Ec =.5 Ec = 2. Ec = 2.5.3 5.25 4.2 3.5. 2.5

Entropy 23, 5 29 The effects of the Eckert number are similar to those for the Prandtl number. The effects of the wall slip parameters on the velocity and temperature profiles is illustrated in Figures and. Figure. Effects of the lower wall slip parameter, (λ )..4 λ =..22.35 λ =. λ =.3.2.3 λ =.5 λ =..2.9 λ =..25.8 λ =. λ =.3.2.7 λ =.5 λ =..5.6.5..4.5.3 Figure. Effects of the upper wall slip parameter, ( )..4.26 =..35 λ =. 2 =.3.24.3 =.5 =..22 =..25 =..2 =.3.2.8 λ =.5 2 =..5..6.5.4 As expected, an increase in the slip parameters correspondingly increases the wall (and hence also the bulk) fluid velocity.

Entropy 23, 5 292 5.3. Entropy Generation In this section, we plot the entropy generation rate (Ns) across the channel under varying parameter conditions. ith the exception of the time evolution graphs shown in Figures 2 and 3, all other graphs are drawn at the time t =. Figure 2. Variation of entropy generation rate with and t..3.25.2 t =.9 t =. t =.5 t = 2. t = 3. Ns.5..5 Figure 3. Variation of Bejan number with and t..6.5 t =.9 t =. t =.5 t = 2. t = 3..4 Be.3.2. Figures 2 2 show the expected results for Ns. In particular, Ns clearly increases with Br Ω, and decreases with increasing m. Parameters that increase the velocity and temperature gradients also increase the entropy generation rate and vice versa. In Figures 2 2, the entropy generation rate is expectedly maximum at the walls where velocity and temperature gradients as well as fluid viscosity are highest and minimum around the channel centerline where the maximum temperature and velocity and hence also zero temperature and velocity gradients are recorded.

Entropy 23, 5 293 Figure 4. Variation of entropy generation rate with and Re..35.3.25.2 Re =. Re =.2 Re =.3 Re =.4 Re =.5 Ns.5..5 Figure 5. Variation of entropy generation rate with and Pr..3.25.2 Pr =. Pr =.2 Pr =.4 Pr =.6 Pr =.8 Ns.5..5 Figure 6. Variation of entropy generation rate with and m..35.3.25 m =. m =. m =.5 m =.8 m =..2 Ns.5..5

Entropy 23, 5 294 Figure 7. Variation of entropy generation rate with and Br Ω..25.2 BrΩ =. BrΩ =.2 BrΩ =.4 BrΩ =.6 BrΩ =.8.5 Ns..5 Figure 8. Variation of entropy generation rate with and λ..6.5.4 λ =. λ =. λ =.3 λ =.5 λ =. Ns.3.2. Figure 9. Variation of entropy generation rate with and..7.6 Ns.5.4 =. =. =.3 =.5 λ =. 2.3.2.

Entropy 23, 5 295 Figure 2. Variation of entropy generation rate with and..3.25.2 Bi =. Bi =.5 =. = 2. Bi = 5. Ns.5..5 Figure 2. Variation of entropy generation rate with and..3.25.2 =. =.5 Bi =. 2 = 2. = 5. Ns.5..5 5.4. Bejan Number In this section, we plot the Bejan number (Be) across the channel under varying parameter conditions. The analysis in this section is similar to that for the previous section with Ns now replaced by Be. Figures 3 29 show as expected that parameters that increase the entropy generation rate will correspondingly decrease the Bejan number and vice versa. Away from the wall (i.e., inside the main flow), the fluid friction with magnetic field irreversibility strongly dominates over heat transfer irreversibility. In the vicinity of the wall, the strength of the fluid parameters will determine which mode of irreversibility dominates over the other.

Entropy 23, 5 296 Figure 22. Variation of Bejan number with and Re..35.3 Re =. Re =.2 Re =.3 Re =.4 Re =.5.25.2 Be.5..5 Figure 23. Variation of Bejan number with and Pr. 8 x 3 7 Pr =. Pr =.2 Pr =.4 Pr =.6 Pr =.8 6 5 Be 4 3 2 Figure 24. Variation of Bejan number with and m..9.8.7 m =. m =. m =.5 m =.8 m =..6 Be.5.4.3.2.

Entropy 23, 5 297 Figure 25. Variation of Bejan number with and Br Ω. 7 x 3 6 5 BrΩ =. BrΩ =.2 BrΩ =.4 BrΩ =.6 BrΩ =.8 4 Be 3 2 Figure 26. Variation of Bejan number with and λ..9.8.7 Be.6.5.4 λ =. λ =. λ =.3 λ =.5 λ =..3.2. Figure 27. Variation of Bejan number with and..9.8.7 Be.6.5.4 =. =. =.3 =.5 λ =. 2.3.2.

Entropy 23, 5 298 Figure 28. Variation of Bejan number with and..9 Be.8.7.6.5 =. Bi =.5 =. = 2. = 5..4.3.2. Figure 29. Variation of Bejan number with and..9.8.7.6 =. =.5 Bi =. 2 Bi = 2. 2 Bi = 5. 2 Be.5.4.3.2. 6. Conclusions e computationally investigate the combined entropy generation rate in an unsteady porous channel flow with Navier slip subjected to asymmetrical convective boundary conditions. A major observation in the current work is the reduction in heat generation due to the presence of uniform suction/injection. e also notice that due to the nature of the coupling of the source terms, the fluid velocity and temperature either both increase or both decrease together. e have also demonstrated computationally that parameters that increase the entropy generation rate will correspondingly decrease the Bejan number and vice versa. In particular wall subjected to higher slip (i.e., lower viscosity) will have lower viscosities but higher Bejan numbers and vice versa. References. Bejan, A. Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 982, 5, 58. 2. Bejan, A. Entropy Genaration Minimization; CRC: Boca Raton, NY, USA, 996.

Entropy 23, 5 299 3. Bejan, A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energy Res. 22, 26, 545 565. 4. ood, L.C. Thermodynamics of Fluid Systems; Oxford University Press: Oxford, UK, 975. 5. Sahin, A.Z. A second law comparison for optimum shape of duct subjected to constant wall temperature and laminar flow. Heat Mass Transf. 998, 33, 425 43. 6. Tasnim, S.H.; Mahmud, S. Entropy generation in a vertical concentric channel with temperature dependent viscosity. Int. Comm. Heat Mass Transf. 22, 29, 97 98. 7. Mahmud, S.; Fraser, R.A. Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates. Energy 22, 2, 4 46. 8. Chinyoka, T. Suction-injection control of shear banding in non-isothermal and exothermic channel flow of johnson-segalman liquids. Trans. ASME J. Fluids Eng. 2, 33, 725. 9. Ireka, I.E.; Chinyoka, T. Non-isothermal flow of a Johnson-Segalman liquid in a lubricated pipe with wall slip. J. Non-Newton. Fluid Mechan. 23, 92, 2 28.. Aziz, A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 29, 4, 64 68.. Makinde, O.D.; Aziz, A. MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. Int. J. Therm. Sci. 2, 49, 83 82. 2. Makinde, O.D. Thermal ignition in a reactive viscous flow through a channel filled with a porous medium. Trans. ASME J. Heat Transf. 26, 28, 6 64. 3. Makinde, O.D. Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions. Appl. Therm. Eng. 29, 29, 773 777. 4. Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K. Thin film flow of a third grade fluid on a moving belt by He s homotopy perturbation method. Int. J. Non-Linear Sci. Numer. Simul. 26, 7, 8. 5. Massoudi, M.; Christe, I. Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe. Int. J. Non-Linear Mech. 995, 3, 687 699. 6. Yurusoy, M.; Pakdemirli, M. Approximate analytical solutions for the flow of a third grade fluid in a pipe. Int. J. Non-Linear Mech. 22, 37, 87 95. 7. Makinde, O.D.; Chinyoka, T. Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling. Commun. Nonlinear Sci. Numer. Simul. 2, 5, 399 393. 8. Makinde, O.D.; Chinyoka, T. Transient analysis of pollutant dispersion in a cylindrical pipe with a nonlinear waste discharge concentration. Comput. Math. Appl. 2, 6, 642 652. 9. Chinyoka, T. Computational dynamics of a thermally decomposable viscoelastic lubricant under shear. Trans. ASME J. Fluids Eng. 28, 3, 22. 2. Chinyoka, T. Poiseuille flow of reactive phan thien tanner liquids in D channel flow. Trans. ASME J. Heat Transf. 2, 32, 7. c 23 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3./).