VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF SOME XANTHENE DYES USING IMMOBILIZED ANTHRACENE

Similar documents
PHOTODEGRADATION OF ROSE BENGAL (MANGANESE DIOXIDE)

PHOTOCATALYTIC DEGRADATION OF ERIOCHROME BLACK T USING AMMONIUM PHOSPHOMOLYBDATE SEMICONDUCTOR

ROLE OF COPRECIPITATED NiS-ZnS IN PHOTOCATALYTIC DEGRADATION OF ALIZARIN RED S

DEGRADATION OF FAST GREEN FCF USING IMMOBILIZED PHOTO-FENTON REAGENT

Photochemical Treatment of Amido Black - 10B Waste Water by Photo-Fenton Reagent

PHOTOCATALYTIC DEGRADATION OF NON-BIODEGRADABLE MALACHITE GREEN DYE BY Ni-DOPED TITANIUM DIOXIDE

A Comparative Study of Photocatalytic Activity of Some Coloured Semiconducting Oxides

USE OF LEAD CHROMATE FOR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE

Pelagia Research Library

PHOTOCATALYTIC DEGRADATION OF AZURE B IN AQUEOUS SOLUTION BY CALCIUM OXIDE


Visible Light Induced Photocatalytic Degradation of Toluidine Blue-O by using Molybdenum Doped Titanium Dioxide

Pelagia Research Library

PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE USING CALCIUM OXIDE

PHOTOCATALYTIC DEGRADATION OF CRYSTAL VIOLET USING NICKEL CONTAINING POLYTUNGSTOMETALATE

PHOTOCATALYTIC DEGRADATION OF MALACHITE GREEN OVER NICKEL VANADATE POWDER. RANJANA RATHORE, RAKSHIT AMETA and SURESH C. AMETA *

Photocatalytic bleaching of malachite green and brilliant green dyes using ZnS-CdS as semiconductor: A comparative study

Photochemical treatment of rhodamine-b wastewater by photo-fenton reagent

Photocatalytic degradation of basic Fuchsin over quaternary oxide iron zinc cuprate (FeZn 2 cu 3 O 6.5 )

Comparison on Degradation of Reactive Black 5 (RB5) in Photocatalytic Fuel Cell (PFC) under UV and Solar Light

Use of Strontium Chromate as Photocatalyst for Degradation of Azure-A

Available online at I-SEEC Proceeding - Science and Engineering (2013) 89 94

Methylene Blue Immobilized Resin Dowex-11 as Photo Catalyst for UV Light Irradiation Assisted Degradation of Acid Yellow 36

Degradation of crystal violet using copper modified iron oxide as heterogeneous photo-fenton reagent

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing

Photocatalytic degradation of disperse azo dye coralene dark red 2B by CeFeO 3

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by Tio 2 Nano Catalyst Using Uv Irradiation

USE OF SEMI-CONDUCTING BISMUTH SULFIDE AS A PHOTOCATALYST FOR DEGRADATION OF ROSE BENGAL

PHOTOCATALYTIC DEGRADATION OF ENVIRONMENTALLY HAZARDOUS CRYSTAL VIOLET DYE USING BISMUTH OXYCHLORIDE AS PHOTOCATALYST

Pelagia Research Library

International Journal of Chemistry and Pharmaceutical Sciences

Journal of Chemical and Pharmaceutical Research

A study of catalytic behaviour of aromatic additives on the photo Fenton degradation of phenol red

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

Studies on Photocatalytic Degradation of Azo Dye Acid Red-18 (PONCEAU 4R) using Methylene Blue Immobilized Resin Dowex-11

Synthesis of nano sized TiO 2 and its application in photocatalytic removal of methylene blue

Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison of the efficiency of sonocataysis and photocatalysis process

A STUDY OF PROCESS VARIABLES FOR THE PHOTOCATALYTIC DEGRADATION OF RHODAMINE B

PHOTOCATALYTIC DEGRADATION OF META- CHLOROPHENOL USING SOLAR AND ARTIFICIAL RADIATION

Photocatalysis: semiconductor physics

Electronic Supplementary Information

Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS ascorbic acid system

Photocatalytic Degradation Study of Methylene Blue Solutions and Its Application to Dye Industry Effluent

DEGRADATION OF TEXTILE DYE FROM AQUEOS SOLUTION BY USING MBIR DOWEX 11 PHOTOCATALYST

TYLOSIN ABATEMENT IN WATER BY PHOTOCATALYTIC PROCESS

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite

Photocatalytic degradation of textile dye through an alternative photocatalyst methylene blue immobilized resin dowex 11 in presence of solar light

Removal of Indigo Caramine dye by using nanosized Semiconducting Photocatalyst in aqueous media

Adsorption Studies of Methylene Blue on TiO 2 Nanoparticles: Experimental and Mathematical Modeling

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by CDS Nano Catalyst Using UV Irradiation

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production by photocatalytic water splitting

Contribution to the Study of Quantum Efficiency of Photocatalytic Reaction of 2,6-Dichloroindophenol

Immobilization of BiOX (X=Cl, Br) on activated carbon fibers as

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

A COMPARATIVE STUDY OF SONOLYTIC, PHOTOCATALYTIC AND SONOPHOTOCATALYTIC DEGRADATION OF CRYSTAL VIOLET

Nano TiO 2 Assisted Degradation of Textile Dyes in H 2 O 2 Aqueous Solution: Kinetic Studies with ph and Mass Effects

(IJIRSE) International Journal of Innovative Research in Science & Engineering ISSN (Online)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

PHOTOCHEMICAL OXIDATION OF p-aminophenol BY FENTON REAGENT

Techniques for effluent treatment. Lecture 5

APPLICATION OF TITANIUM DIOXIDE PHOTOCATALYSIS TO CREATE SELF-CLEANING MATERIALS

Journal of Innovative Engineering R Senthilkumar et al., Journal of Innovative Engineering 2014, 2(2): 5

Supplementary Information for

How can oxidation be done

Supplementary Information

THE USE OF SURFACTANT IN PHOTO GALVANIC CELLS FOR SOLAR ENERGY CONVERSION AND STORAGE: A TERGITOL 7 -MANNITOL METHYLENE BLUE SYSTEM

Photo catalytic degradation of methylene blue in aqueous solutions using TiO2 nanoparticles

Photocatalytic degradation of Rose Bengal using semiconducting zinc sulphide as the photocatalyst

The vacuum thermal treatment effect on the optical absorption spectra of the TiO 2 coated by Ni-B nano-clasters photocatalyst powders

Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System

Improvement of photocatalytic activity of Zinc Oxide nanoparticles using Zinc Sulphide Shell

PHOTOCATALYTIC DEGRADATION OF TURQUOISE BLUE DYE USING IMMOBILIZED AC/TIO2: OPTIMIZATION OF PROCESS PARAMETERS AND PILOT PLANT INVESTIGATION

CHAPTER 3 MATERIALS AND METHODS

DEGRADATION OF METHYLENE BLUE VIA GEOPOLYMER COMPOSITE PHOTOCATALYSIS Wellington, New Zealand

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

A comparative study of the azo dye reactive black 5 degradation by UV/TiO 2 and photo-fenton processes

Degradation of Methylene Blue Dye using A Photochemical Reactor

Photocatalytic degradation of 4-nitrophenol in aqueous N, S-codoped TiO 2 suspensions

Photocatalytic degradation of methylene blue and crystal violet by sulfur/reduced graphene oxide composite

Supporting information. Enhanced photocatalytic degradation of methylene blue and adsorption of

IJRPC 2015, 5(2), Preetha et al. ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

HYDROTHERMAL SYNTHESIS OF NiS/CdS NANOCOMPOSITES WITH ENHANCED VISIBLE-LIGHT PHOTOCATALYTIC PERFORMANCE

12 Journal of Natural Sciences, Vol. 1 No. 2, December 2013

A novel Ag 3 AsO 4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance

PHOTOCATALYTIC REMOVAL OF TRI- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPLATING WASTEWATER

COMPARISON STUDY OF CONGO RED DYE DEGRADATION PROCESS USING FENTON S REAGENT AND TiO2

Preparation of TiO2-Bamboo Leaves Ash Composite as Photocatalyst for Dye Photodegradation

INTERFERING EFFECTS IN THE MEASUREMENT OF BTEX DEPOLLUTION IN AIR BY PHOTOCATALYTIC MATERIALS

Supporting Information

Synthesis and photocatalytic activity of TiO2 Nanoparticles

Advanced Method of Purification of Pharmaceutical

Use of Photo-Fenton Reagent for Photocatalytic Degradation of Reactive Red 45

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Sawsan Mohamed Abu El Hassan Mosa

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la

Photocatalytic Ozonation for Treatment of Wastewater

Titanium dioxide nanoparticles as a highly active photocatalytic material

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves

Transcription:

, 361-368. ISSN 1011-3924 Printed in Ethiopia 2008 Chemical Society of Ethiopia VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF SOME XANTHENE DYES USING IMMOBILIZED ANTHRACENE Pinki B. Punjabi *, Rakshit Ameta, Anil Kumar * and Madhu Jain Solar Energy and Photochemistry Laboratory, Department of Chemistry, University College of Science, M. L. Sukhadia University, Udaipur 313002, (Rajasthan) India (Received October 24, 2007; revised February 4, 2008) ABSTRACT. Photocatalytic degradation of eosin and erythrosin-b (xanthene dyes) has been carried out using anthracene semiconductor immobilized on polyethylene films. Effect of various parameters like ph, concentration of dyes, amount of semiconductor and light intensity have been studied on the rate of reaction. Various control experiments were carried out which indicated that semiconductor anthracene played a key role in photocatalytic degradation of dyes. A suitable tentative mechanism has been proposed for photocatalytic degradation of dyes. KEY WORDS: Photocatalytic, Degradation, Xanthene dyes, Immobilized anthracene INTRODUCTION Dye pollutants from the textile industries play a very important role in contaminating the environment. Environmental pollution by the wastewater containing dyes is setting an ecological problem and hazards to aquatic animals. About 15 % of the total world production of the dyes is lost during the dyeing process [1]. Recently, heterogeneous photochemical processes using semiconductor as a photocatalyst have gained wide interest in treatment of effluents from textile industries [2-6]. In this process, semiconductor particles are irradiated with light energy equal to or greater than its band gap. It results in the formation of electron-hole pair. Electron is present in conduction band, whereas hole is present in the valence band. The field of photocatalysis has been extensively reviewed by many researchers [7, 8]. Punjabi et al. [9] studied the photoreduction of congo red by ascorbic acid and EDTA as reductants over cadmium sulfide as a photocatalyst. The photodegradation of dye pollutants on silica gel supported TiO 2 particles under visible light has been studied by Chen et al. [10]. Photocatalytic degradation of a textile azo dye (Sirius Gelb) on TiO 2 or Ag-TiO 2 particles in the absence and presence of UV radiations has been reported by Ozkan et al. [11]. In the present investigation, the semiconducting properties of a readily available substance anthracene in colloidal form will be utilized for photocatalytic degradation of some xanthene dyes. Like other inorganic semiconductor photocatalysts, anthracene colloid also acts as an organic semiconductor. It absorbs photons to create electron hole pair, which can participate in the redox reactions further. Since colloidal anthracene remains in form of suspension and creates a problem in the measurement of absorbance. Therefore, to avoid this problem an attempt has been made to immobilize colloidal anthracene on polyethylene films. The immobilized anthracene has been used for the photocatalytic degradation of dyes. Material and methods EXPERIMENTAL Eosin (BDH, UK), erythrosin-b (CDH, India), anthracene (BDH, UK), glacial acetic acid (BDH, UK) and araldite (India) were of laboratory grade and were used as received. In all experiments aqueous solutions of the dyes (usually 10-5 M at ph 7) were prepared. *Corresponding author. E-mail: pb_punjabi@yahoo.com, anilchohadia@yahoo.co.in

362 Pinki B. Punjabi et al. For ph measurement a digital ph meter (Systronics Model 324, India) was used. A 200 W tungsten lamp (Phillips, India) was used for irradiating the reaction mixture in visible range. The light intensity was measured with the help of a solarimeter (Surya Mapi Model CEL 201, India). The progress of the reaction was followed spectrophotometrically by measuring the absorbance of the reaction mixture at their respective λ max values at different time intervals. A spectrophotometer (Systronics Model 106, India) was used for measuring the absorbance of the reaction mixture. Preparation of anthracene colloid and its mmobilization on polyethylene films Anthracene colloidal suspension was prepared by dissolving 100.0 mg anthracene in 1.0 ml of warm glacial acetic acid. When this solution was poured into water, a milky white colloidal suspension of anthracene was formed. The colloidal suspension of anthracene was washed with water several times and then dried in an oven. It was observed that the use of semiconductor colloidal anthracene creates problem in correct measurement of absorbance because it remains in the form of suspension. Therefore, an attempt was made to immobilize the colloidal anthracene on polyethylene films. Circular polyethylene films were cleaned and coated with araldite (insoluble in water). Then colloidal anthracene powder was spread evenly on the surface of polyethylene films. After air-drying the films were washed with water to release loosely bound particles of colloidal anthracene and films were dried at room temperature. Photocatalytic degradation of dyes For each observation 50.0 ml of dye solution ( 10 5 M) was taken in a reaction flask and 0.04 g of semiconductor anthracene (immobilized on polyethylene films) was added to it. The infrared fraction of light was eliminated by keeping a water filter between irradiation source and reaction mixture. The pre-aerated reaction mixture was exposed to tungsten lamp. Absorbance of the reaction mixture was observed at regular time intervals. In a control experiment, photocatalytic degradation was carried out in the presence of nonconducting alumina (Al 2 O 3 ) in place of anthracene. It was observed that there was no appreciable photodegradation of dyes in presence of alumina, indicating that for photodegradation of dyes semiconductor anthracene plays a key role. In another control experiment, equal quantities of dye solution were taken in four beakers (50.0 ml dye solution in each). The first beaker containing dye solution was kept in dark, whereas the second beaker containing only dye solution was kept in sunlight. 0.04 g of semiconductor anthracene (immobilized on polyethylene film) was added to the third beaker containing dye solution and it was kept in dark, and 0.04 g of semiconductor anthracene (immobilized on polyethylene film) was added to the beaker containing dye solution and was exposed to sunlight. These beakers were kept for four hours and absorbance of the solution in each beaker was measured by spectrophotometer. It was observed that the solutions of the first three beakers had the same initial absorbance while the solution of the fourth beaker had a decrease in its initial value of absorbance. The above experiment confirms that the reaction between dye and semiconductor anthracene is neither thermal nor photochemical but it is a photocatalytic reaction.

Visible light induced photocatalytic degradation of some xanthene dyes 363 RESULTS AND DISCUSSION NaOOC COONa Br Br I I O Br O Br ONa NaO I O I O Eosin dye λ max = 515 nm Erythrosin-B dye λ max = 525 nm The structure and λ max of eosin and erythrosin-b are shown above. By variation of different parameters like ph, dye concentration, amount of semiconductor and light intensity optimum conditions were obtained for photocatalytic degradation of each dye at their respective λ max values. Typical runs were obtained by plotting 1 + log A vs time. These plots were found linear indicating that photocatalytic degradation of dyes follow pseudo first order kinetics. The rate constant (k) was determined using following expression, k = 2.303 x slope For both dyes typical run data are presented in Table 1 and graphically in Figure 1. Table 1. Typical run for eosin and erythrosine. Time of irradiation 1 + log A (min) Eosin Erythrosin-B 0.0 0.960 1.041 15.0 0.952 0.997 30.0 0.942 0.923 45.0 0.932 0.855 60.0 0.924 0.790 75.0 0.914 0.721 90.0 0.905 0.650 105.0 0.896 0.588 120.0 0.886 0.517 135.0 0.878 0.455 150.0 0.869 0.382 k = 2.31 ± 0.058 x 10 5 s 1 k = 1.75 ± 0.044 x 10 4 s 1 [Eosin] = 7.50 x 10 6 M, ph = 8.0, anthracene = 0.04 g, light intensity = 40.0 mwcm 2. [Erythrosin-B] = 1.00 x 10 5 M, ph = 8.0, anthracene = 0.04 g, light intensity = 40.0 mwcm 2. It was observed that the rate of reaction was slightly higher if colloidal anthracene is used but a part of anthracene will be lost along with effluent. Therefore, the immobilized anthracene was used throughout the present investigation.

364 Pinki B. Punjabi et al. 0.98 1.10 1 + log A (Eosin) 0.96 0.94 0.92 0.90 1.00 0.90 0.80 0.70 0.60 0.50 1 + log A (Erythrosin-B) 0.88 0.40 0.30 0.86 0.20 0 15 30 45 60 75 90 105 120 135 150 Time (min) Figure 1. Typical run: [eosin] = 7.50 x 10 6 M, ph = 8.0, anthracene = 0.04 g, light intensity = 40.0 mwcm 2 ; [erythrosin-b] = 1.00 x 10 5 M, ph = 8.0, anthracene = 0.04 g, light intensity = 40.0 mwcm 2. Effect of ph The influence of the ph on the rate of photocatalytic bleaching for both dyes is shown in Figure 2. The degradation curves for dyes have been plotted between rate constant and corresponding ph values. The results show that photocatalytic bleaching of the dyes is strongly dependent on the ph of the solution. A weakly alkaline ph was found to be favorable for photocatalytic degradation of dyes. Photocatalytic degradation was studied in the ph range 6.0-10.0. It was observed that rate of reaction increases on increasing the ph, and after a certain ph, further increase in ph decreases the rate of reaction. Initially, when the ph is slightly acidic the rate increases due to availability of OH ions in a concentration which is required for increasing the rate of reaction. These OH ions generate OH radicals which are effective oxidizing species and responsible for photocatalytic degradation of dyes. As the ph of the reaction mixture was further increased (alkaline ph) more OH ions are introduced in the reaction mixture, which make the surface of the semiconductor negatively charged. Repulsive forces start interacting between the negatively charged semiconductor surface and dye anions, thereby making the approach of dye anions on the surface of semiconductor difficult. It results in the decrease in rate of photocatalytic bleaching of dyes (Figure 2).

Visible light induced photocatalytic degradation of some xanthene dyes 365 2.4 20.0 2.2 18.0 k x 10 5 (s -1 ) Eosin 2.0 1.8 1.6 1.4 1.2 16.0 14.0 12.0 10.0 8.0 6.0 k x 10 5 (s -1 ) Erythrosin-B 1.0 4.0 0.8 2.0 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 ph Figure 2. Effect of ph: [eosin] = 7.50 x 10 6 M, anthracene = 0.04 g, light intensity = 40.0 mwcm 2 ; [erythrosin-b] = 1.00 x 10 5 M, anthracene = 0.04 g, light intensity = 40.0 mwcm 2. Effect of concentration of dyes Photocatalytic bleaching increases with increase in the concentration of dyes. It may be attributed to the fact that as the concentration of the dye was increased, more dye molecules were available for excitation and energy transfer, resulting in an increase in rate of reaction. But beyond a certain concentration, an increase in concentration of dyes adversely affected the reaction rate. This is because at higher concentration dyes starts acting as a blanket or cover and will not permit the desired light intensity to reach the semiconductor surface, thus decreasing the rate of photocatalytic bleaching (Figure 3). Photocatalytic degradation was studied in the concentration range 0.25 x 10-5 M to 2.25 x 10-5 M. Effect of amount of semiconductor It was observed that rate of photocatalytic bleaching of dyes increase with an increase in the amount of the semiconductor. But after certain fixed concentration of semiconductor the rate becomes almost constant because higher concentration of semiconductor increases only thickness and not the surface area. Thus the active sites on semiconductor surface become constant at higher concentration, and therefore the rate too (Figure 4). The photocatalytic degradation of eosin and erythrosin-b was studied in the range 0.010 g to 0.060 g.

366 Pinki B. Punjabi et al. 2.7 2.2 18 17 16 k x 10 5 (s -1 ) Eosin 1.7 1.2 0.7 15 14 13 12 11 10 k x 10 5 (s -1 ) Erythrosin-B 9 0.2 8 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.5 1.8 2.0 2.3 [Dye] x 10 5 M Figure 3. Effect of dye concentration: for both dyes ph = 8.0, anthracene = 0.04 g, light intensity = 40.0 mwcm 2. 2.8 22.0 2.6 2.4 20.0 k x 10 5 (s -1 ) Eosin 2.2 2.0 1.8 1.6 18.0 16.0 14.0 k x 10 5 (s -1 ) Erythrosin-B 1.4 1.2 12.0 1.0 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 Amount of semiconductor (g) Figure 4. Effect of amount of semiconductor: [eosin] = 7.50 x 10 6 M, [erythrosin-b] = 1.00 x 10 5 M, for both dyes ph = 8.0, light intensity = 40.0 mwcm 2. 0.05 0.06 0.06 10.0

Visible light induced photocatalytic degradation of some xanthene dyes 367 Effect of light intensity An increase in the light intensity accelerated the rate of the reaction because any increase in the light intensity will increase the number of photons striking per unit area of semiconductor powder (Figure 5). The photocatalytic degradation of eosin and erythrosin-b was studied in the range 20.0 70.0 mwcm -2. 5.0 4.5 4.0 36.0 31.0 k x 10 5 (s -1 ) Eosin 3.5 3.0 2.5 2.0 1.5 1.0 0.5 26.0 21.0 16.0 11.0 k x 10 5 (s -1 ) Erythrosin-B 0.0 6.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 Light intensity (mwcm -2 ) Figure 5. Effect of light intensity: [eosin] = 7.50 x 10 6 M, ph = 8.0, anthracene = 0.04 g; [erythrosin-b] = 1.00 x 10 5 M, ph = 8.0, anthracene = 0.04 g. Mechanism On the basis of the above findings following tentative mechanism for the photocatalytic degradation of dyes has been proposed. The reaction is initiated by the photoexcitation of ground state dye molecules to their excited singlet state which then undergo intersystem crossing to their triplet state. 1 Dye 0 hν 1 Dye 1 1 Dye 1 ISC 3 Dye 1 Semiconductor anthracene [12, 13] also gets photoexcited leading to the formation of electron hole pairs. Anthracene (C 14 H 10 ) hν C 14 H 10 (e CB + h VB + ) The photogenerated hole (h + ) abstracts an electron from the triplet dye leading to the formation of dye cation (Dye + ) which reacts with OH ions giving OH radicals, the actual oxidizing agents. 3 Dye 1 + h + (anthracene) Dye + + C 14 H 10 (e CB )

368 Pinki B. Punjabi et al. Dye + + OH Dye + OH Electrons (e CB ) are removed by the dissolved molecular oxygen to produce superoxide anion radicals which then react with water to form more and more OH radicals. The semiconductor anthracene is regenerated for further reaction. C 14 H 10 (e CB ) + O 2 C 14 H 10 + O 2 O 2 + 2 H 2 O 2 OH + 2 OH + O 2 The reaction of OH radicals with dye molecules leads to its oxidation into colourless gaseous products. Dye + OH Colourless gaseous products The participation of OH radicals in the reaction was confirmed by the use of electron acceptor like hydrogen peroxide, H 2 O 2 in the reaction mixture. The H 2 O 2 reacts with e CB to produce OH radicals, which accelerate the rate of the dye degradation. H 2 O 2 + e CB OH + OH AKNOWLEDGEMENTS We are highly thankful to Prof. Suresh C. Ameta, Department of Chemistry, M. L. Sukhadia University, Udaipur (Rajasthan, India) for valuable critical discussions. REFERENCES 1. Zollinger, H. (Ed.) Color Chemistry, Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd ed., VCH: Weinheim; 1991. 2. Konatantinou, I.; Sakellarides, T.M.; Sakkas, V.; Albanis, T.A. Environ. Sci. Technol. 2001, 35, 398. 3. Matthews, R.W. J. Catal. 1988, 111, 264. 4. Grzechulska, J.; Hamerski, M.; Morawski, A.W. Wat. Res. 2000, 34, 1638. 5. Mas, D.; Pichat, P.; Guillard, C. Res. Chem. Intermed. 1997, 23, 275. 6. Osora, H.; Li, W.; Otero, L.; Fox, M.A. J. Photochem. Photobiol. B 1998, 43, 232. 7. Ameta, S.C.; Choudhary, R.; Ameta, R.; Vardia, J. J. Ind. Chem. Soc. 2003, 80, 257. 8. Scheavello, M. Heterogeneous Photocatalysis, Wiley: New York; 1997. 9. Punjabi, P.B.; Ameta, R.; Vyas, R.; Kothari, S. Ind. J. Chem. 2005, 44A, 2266. 10. Chen, Y.X.; Wany, K.; Louep, J. Photochem. Photobiol. A 2004, 163, 281. 11. Ozkan, A.; Ozkan, M.H.; Gurkan, R.; Akay, M.; Sokmen, M. J. Photochem. Photobiol. A 2004, 163, 29. 12. Meicr, H. Organic Semiconductors, Dark and Photoconductivity Organic Solids, Verlag Chemisorb: Weinhein; 1974. 13. Gutmann, F.; Lyons, L.F. Organic Semiconductors, Wiley: New York; 1967.