CHAPTER 23 MACLAURIN S SERIES

Similar documents
Completion Date: Monday February 11, 2008

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43

July 21 Math 2254 sec 001 Summer 2015

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

Solutionbank Edexcel AS and A Level Modular Mathematics

Math 122 Test 3. April 17, 2018

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Math 122 Test 3. April 15, 2014

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Version 1.0. General Certificate of Education (A-level) January 2011 MFP2. Mathematics. (Specification 6360) Further Pure 2.

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

Math 113 (Calculus 2) Exam 4

Edexcel Core Mathematics 4 Parametric equations.

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

Differential Equations DIRECT INTEGRATION. Graham S McDonald

GCE. Mathematics. Mark Scheme for January Advanced GCE Unit 4726: Further Pure Mathematics 2

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13.

Hyperbolic Functions 6D

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

CHAPTER 72 AREAS UNDER AND BETWEEN CURVES

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

1 Exam 1 Spring 2007.

Without fully opening the exam, check that you have pages 1 through 12.

CHAPTER 71 NUMERICAL INTEGRATION

Mark Scheme (Results) Summer 2008

Math 113 Fall 2005 key Departmental Final Exam

Test one Review Cal 2

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

CONTINUITY AND DIFFERENTIABILITY

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications.

Without fully opening the exam, check that you have pages 1 through 12.

STEP Support Programme. Pure STEP 3 Solutions

Worksheet Week 7 Section

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12.

Math 126 Enhanced 10.3 Series with positive terms The University of Kansas 1 / 12

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed.

cosh 2 x sinh 2 x = 1 sin 2 x = 1 2 cos 2 x = 1 2 dx = dt r 2 = x 2 + y 2 L =

Introduction to Differential Equations

Absolute Convergence and the Ratio Test

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014

MTH 133 Solutions to Exam 2 April 19, Without fully opening the exam, check that you have pages 1 through 12.

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11

Without fully opening the exam, check that you have pages 1 through 12.

Math Dr. Melahat Almus. OFFICE HOURS (610 PGH) MWF 9-9:45 am, 11-11:45am, OR by appointment.

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

Have a Safe Winter Break

Section 10.7 Taylor series

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

A sequence { a n } converges if a n = finite number. Otherwise, { a n }

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

Math 1720 Final Exam Review 1

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 2

Chapter 3 Differentiation Rules (continued)

Without fully opening the exam, check that you have pages 1 through 13.

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

MAS113 CALCULUS II SPRING 2008, QUIZ 4 SOLUTIONS

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

FY B. Tech. Semester II. Complex Numbers and Calculus

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

MATH 1242 FINAL EXAM Spring,

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

Taylor and Maclaurin Series

Multiple Choice Review Problems

TAYLOR AND MACLAURIN SERIES

Practice Differentiation Math 120 Calculus I Fall 2015

Differential Equations: Homework 8

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z

(a) 82 (b) 164 (c) 81 (d) 162 (e) 624 (f) 625 None of these. (c) 12 (d) 15 (e)

Math 21B - Homework Set 8

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Taylor and Maclaurin Series. Approximating functions using Polynomials.

C3 Revision and Exam Answers: Simpson s Rule

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES

Absolute Convergence and the Ratio Test

Calculus B Workshop #4 (March 23, 2012)

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

A-LEVEL Mathematics. MFP2 Further Pure 2 Mark scheme June Version: 1.0 Final

Things you should have learned in Calculus II

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas

Math 113 (Calculus II) Final Exam KEY

Taylor and Maclaurin Series. Approximating functions using Polynomials.

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

Representation of Functions as Power Series

Chapter 13: General Solutions to Homogeneous Linear Differential Equations

Prelim Examination 2015/2016 (Assessing all 3 Units) MATHEMATICS. CFE Advanced Higher Grade. Time allowed - 3 hours

Transcription:

EXERCISE 97 Page 9 CHAPTER MACLAURIN S SERIES. Determine the irst our terms o the power series or sin using Maclaurin s series. Let () sin () sin () cos () cos () sin () sin () 8 cos () 8 cos 8 i( ) 6 sin i() 6 sin ( ) cos () cos ( ) 6 sin () 6 sin i ( ) 8 cos i () 8 cos 8 Maclaurin s series states: () () + () +! () +! () + i.e. () 5 6 7 + () + () + ( 8) + () + () + () + ( 8)!!! 5! 6! 7! 8 5 87 + 6 5 8 i.e. sin + 5 7 5 5. Use Maclaurin s series to produce a power series or cosh as ar as the term in 6 Let () cosh () cosh () sinh () sinh () 9 cosh () 9 cosh 9 () 7 sinh () 7 sinh i( ) 8 cosh i() 8 cosh 8 59, John Bird

( ) sinh () sinh ( ) 79 cosh () 79 cosh 79 Maclaurin s series states: () () + () +! () +! () + 9 8 79 i.e. () + + + 7 5 6 + () + (9) + () + (8) + () + (79) +...!!! 5! 6! 6 9 7 8 i.e. cosh + + + 6 8 8. Use Maclaurin's theorem to determine the irst three terms o the power series or ln( + e ). Let () ln ( + e ) () ln ( e ) + ln () e + e () e + e () ( + e ) e e ( e ) ( + e ) + e e e e () ( ) ( ) ( + e ) Maclaurin s series states: () () + () + () +! i.e. ln ( e ) + ln + + +...! ln + + 8! () +. Determine the power series or cos t as ar as the term in t 6 Let (t) cos t () cos (t) sin t () sin (t) 6 cos t () 6 cos 6 (t) 6 sin t () 6 sin 6, John Bird

i () t 56 cos t i() 56 cos 56 () t sin t () sin () t 96 cos t () 96 cos 96 Maclaurin s series states: (t) () + t () + t! () + t! () + 6t 56t 96t i.e. () + 7 t t t t5 t6 + t() + ( 6) + () + (56) + () + ( 96) +...!!! 5! 6! 6 56 i.e. cos t 8t + t t6 5 5. Epand e (/) in a power series as ar as the term in Let () e (/) () e () e () e () 9 e 9 () e 9 () 7 e 8 7 () e 8 7 8 Maclaurin s series states: () () + () +! () +! () + 9 7 + + + +...!! 8 9 7 i.e. () + + + 8 8 9 9 i.e. e (/) + + + 8 6 6. Deelop, as ar as the term in, the power series or sec. Let () sec () sec 6, John Bird

() sec tan () () ( sec )( sec ) + ( tan )( sec tan ) sec [ sec + tan ] sec [ sec + sec ] [ ] sec sec 8sec sec () 8 () ( ) sec sec tan 8sec tan 8sec tan 8sec tan () i( ) ( 8sec )( sec ) + ( tan )( sec (sec tan ) ) ( 8sec )( sec ) ( tan )( 6sec tan ) + i() 96 + 6 8 Maclaurin s series states: () () + () + () +! + () + () + () + (8)!!! 8 + + () +! i.e. sec + + as ar as the term in 7. Epand e cos as ar as the term in using Maclaurin s series. Let () e cos () e cos () ( e )( sin ) + ( cos)( e ) e ( cos sin ) () e ( cos sin ) () ( e )( 6sin 9cos ) ( cos sin)( e ) + () 9 + 5 Maclaurin s series states: () () + () +! + () + ( 5)! () +! () + 6, John Bird

5 i.e. e cos + as ar as the term in 8. Determine the irst three terms o the series or sin by applying Maclaurin s theorem. Let () sin () sin () sin cos () sin cos () ( sin )( sin ) + (cos )( cos ) ( ) sin + cos cos sin cos () cos () sin () sin i( ) 8 cos i() 8 cos 8 ( ) 6 sin () 6 sin ( ) cos () cos Maclaurin s series states: () () + () + () +! i.e. 6 sin () +! 5 6 + () + () + () + ( 8) + () + () +...!!! 5! 6! + to three terms 5 9. Use Maclaurin s series to determine the epansion o ( + t) Let (t) ( + t) () 8 (t) ( + t) () 8( + t) () 8() 6 (t) ( + t) () 8( + t) () 8() (t) 96( + t)() 9( + t) () 9() 576 i( ) t 9() 8 i() 8 t Maclaurin s series states: (t) () + t () + () +! t! () + t t t 8 + t(6) + () + (576) + (8) +...!!! 6, John Bird

i.e. (t) ( + t) 8+ 6t+ 6t + 96t + 6t 6, John Bird

EXERCISE 98 Page. Ealuate.6 e sin d., correct to decimal places, using Maclaurin s series. Let () esin () e sin () ( esin )( cos ) () sin ( )( ) () ( e sin )( sin sin ) + ( cos)( e cos) e cos esin ( cos sin) () esin ( cos sin ) () ( esin)( cos sin cos sin ) + ( cos sin)( e cos) () ( esin )( cos sin cos sin ) ( cos sin )( e cos ) + ()( ) + ()() Maclaurin s series states: () () + () +! + + + () +! () + Hence,.6 e sin d..6.6 d. + + + +. ( ) ( ) ( ).6. (.6) +.6 + (.) + (.) + (.8 +.5 +.8) (.6 +.6 +.).8.66.78, correct to decimal places. Use Maclaurin s theorem to epand cos and hence ealuate, correct to decimal places, cos d Let () cos () cos () sin () sin () cos () cos () 8 sin () 8 sin 65, John Bird

i( ) 6 cos i() 6 cos 6 ( ) sin () sin ( ) 6 cos () 6 cos 6 Maclaurin s series states: () () + () +! () +! () + 5 6 + () + ( ) + () + (6) + () + ( 6) +...!!! 5! 6! i.e. 6 6 6 () + +... 7 i.e. cos + 6 +... 5 Hence, Hence, 6... 6 cos + 5 + 5 + +... cos 5 7 d d + 5 + 5 5 7 8 + 8 5 7 75.5.75 + ( ).88, correct to decimal places. Determine the alue o cosd, correct to signiicant igures, using Maclaurin s series. 6 From Problem, page 6, cos + +...!! 6! Since then 5 9 6 cos + +... + +...!! 6! 7 66, John Bird

Thus, cosd + +... d 7 5 9 7 + +... 7 () () (7) 7 68 + ( ).5, correct to signiicant places. Use Maclaurin s theorem to epand ln( + ) as a power series. Hence ealuate, correct to decimal places,.5 ln( + ) d. From page 7, ln( + ) + +... Hence, 5 ln( )d + + + +... d 5 5 7 9.5... + + 5 6.5.5 5 7 9 5 + + +... 5 7 9 5 5 6.5 5 7 7 65 5 7 9 (.5) (.5) + (.5 ) (.5) + (.5) +... [ ].77.6 +.7. +..67.6, correct to decimal places 67, John Bird

EXERCISE 99 Page. Determine: + lim + 5 + + 5 lim 6 + 6 + 9. Determine: sin sin cos cos. Determine: ln( + ) ln( + ) +. Determine: lim sin + sin + cos lim + 5. Determine: sin cos lim ( )( ) cos sin cos sin lim + sin cos lim cos + sin ( sin ) + cos () + cos + 6 6 6 6 68, John Bird

6. Determine: ln t t t ln t lim lim t t t t t 7. Determine: sinh sin lim sinh sin lim cosh cos sinh + sin cosh + cos 6 6 + 6 6 8. Determine: sin ln sin π sin ln sin π cos π lim lim sin sin cos sin { } π π 9. Determine: sect t tsin t sect secttan t (sec t)(sec t) + (tan t)(sec ttan t) t tsin t t tcost sin t t + t( sin t) + cost+ cost + + + 69, John Bird