arxiv:quant-ph/ v1 16 Jan 2007

Similar documents
Might EPR particles communicate through a wormhole?

Might EPR particles communicate through a wormhole?

QUANTUM EINSTEIN S EQUATIONS AND CONSTRAINTS ALGEBRA

arxiv:gr-qc/ v1 11 Nov 1996

On the Hawking Wormhole Horizon Entropy

arxiv:quant-ph/ v1 5 Sep 2001

PURE QUANTUM SOLUTIONS OF BOHMIAN

The Causal Interpretation of Quantum Mechanics and The Singularity Problem in Quantum Cosmology

Probability in relativistic quantum mechanics and foliation of spacetime

arxiv:hep-th/ v3 24 Apr 2007

On the Electric Charge Quantization from the Aharonov-Bohm Potential

The Role of Black Holes in the AdS/CFT Correspondence

Vacuum Energy Density near Fluctuating Boundaries

SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL

Quantum Gravity and Black Holes

The Geometric Scalar Gravity Theory

arxiv: v2 [gr-qc] 22 Jan 2014

arxiv: v1 [gr-qc] 19 Jun 2009

DeBroglie-Bohm interpretation of a Hořava-Lifshitz quantum cosmology model

TWO-DIMENSIONAL BLACK HOLES AND PLANAR GENERAL RELATIVITY

The D 2 Limit of General Relativity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Gravitational waves, solitons, and causality in modified gravity

Gravitational Waves and New Perspectives for Quantum Gravity

Holographic Entanglement and Interaction

Analogue non-riemannian black holes in vortical moving plasmas

arxiv:gr-qc/ v1 20 Apr 2006

A Panoramic Tour in Black Holes Physics

Theoretical Aspects of Black Hole Physics

A rotating charged black hole solution in f (R) gravity

Some Properties of Charge-Conjugated Spinors in D. Abstract. Spinors for an arbitrary Minkowski space with signature (t, s) are reassessed in

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

arxiv:gr-qc/ v1 28 Feb 2000

arxiv:hep-th/ v2 15 Jan 2004

Gauss-Bonnet Gravity with Scalar Field in Four Dimensions

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

8.821 String Theory Fall 2008

arxiv:gr-qc/ v1 14 Jul 1994

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

Vacuum Polarization in the Presence of Magnetic Flux at Finite Temperature in the Cosmic String Background

arxiv:gr-qc/ v4 23 Feb 1999

PROBABILITY FOR PRIMORDIAL BLACK HOLES IN HIGHER DIMENSIONAL UNIVERSE

General Relativity (225A) Fall 2013 Assignment 8 Solutions

LQG, the signature-changing Poincaré algebra and spectral dimension

Effective temperature for black holes

Causal RG equation for Quantum Einstein Gravity

Exact Solutions of the Einstein Equations

Trapped ghost wormholes and regular black holes. The stability problem

Black Hole Entropy: An ADM Approach Steve Carlip U.C. Davis

arxiv: v1 [gr-qc] 7 Mar 2016

arxiv: v1 [hep-th] 3 Feb 2016

Dynamical compactification from higher dimensional de Sitter space

Black hole thermodynamics

Holography for 3D Einstein gravity. with a conformal scalar field

Traversable wormholes: Some simple examples

Holographic entanglement entropy

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case).

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution

κ = f (r 0 ) k µ µ k ν = κk ν (5)

Generally Covariant Quantum Theory: Examples.

The Partition Function for the Anharmonic Oscillator in the Strong-Coupling Regime

Stability and Instability of Black Holes

Snyder noncommutative space-time from two-time physics

Approaches to Quantum Gravity A conceptual overview

Bulk versus boundary quantum states

ON A GEOMETRICAL DESCRIPTION OF QUANTUM MECHANICS

1. Introduction A few years ago, Ba~nados, Teitelboim and Zanelli (BTZ) showed that three-dimensional General Relativity with a negative cosmological

arxiv: v2 [gr-qc] 31 Aug 2009

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Non-singular quantum cosmology and scale invariant perturbations

Quark-gluon plasma from AdS/CFT Correspondence

Classical membranes. M. Groeneveld Introduction. 2. The principle of least action

Applications of Bohmian mechanics in quantum gravity

New Fundamental Wave Equation on Curved Space-Time and its Cosmological Applications

Gravity and scalar fields. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham)

arxiv:gr-qc/ v1 7 Sep 1998

Gravitational collapse and the vacuum energy

arxiv:hep-ph/ v1 11 Mar 1994

Holography and (Lorentzian) black holes

A. Larrañaga 1,2 1 Universidad Nacional de Colombia. Observatorio Astronomico Nacional. 1 Introduction

arxiv:gr-qc/ v1 27 Jan 1998

Black hole thermodynamics under the microscope

2 General Relativity. 2.1 Curved 2D and 3D space

Inequivalent Representations of a q-oscillator Algebra in a Quantum q-gas

arxiv:gr-qc/ v1 29 Nov 1994

Applications of AdS/CFT correspondence to cold atom physics

General Relativity in a Nutshell

Horizontal Charge Excitation of Supertranslation and Superrotation

The trace formulas yield the inverse metric formula

Visible, invisible and trapped ghosts as sources of wormholes and black universes

arxiv:gr-qc/ v1 22 Oct 2004

Classical Oscilators in General Relativity

Black holes, Holography and Thermodynamics of Gauge Theories

arxiv:hep-th/ v2 7 Jun 2005

Cosmic Bubble Collisions

arxiv: v1 [gr-qc] 14 May 2013

arxiv:hep-th/ v1 5 Nov 2003

Hawking radiation via tunnelling from general stationary axisymmetric black holes

Non-static local string in Brans Dicke theory

Transcription:

Might EPR particles communicate through a wormhole? 1, 2, E. Sergio Santini 1 Comissão Nacional de Energia Nuclear Rua General Severiano 90, Botafogo 22290-901 Rio de Janeiro, RJ Brasil 2 Centro Brasileiro de Pesquisas Físicas, arxiv:quant-ph/0701106v1 16 Jan 2007 Coordenação de Cosmologia, Relatividade e Astrofísica: ICRA-BR, Rua Dr. Xavier Sigaud 150, Urca 22290-180 Rio de Janeiro, RJ Brasil Abstract We consider the two-particle wave function of an EPR system given by a two dimensional relativistic scalar field model. The Bohm-de Broglie interpretation is applied and the quantum potential is viewed as modifying the Minkowski geometry. In such a way a black hole metric appear in one case and a particular metric with singularities appear in other case, opening the possibility, following Holland, of interpret the EPR correlations as originated by a wormhole effective geometry, through which physical signals can propagate. PACS numbers: 03.65.Ta, 03.65.Ud, 03.70.+k, 04.60.Kz This is an extended and more readable version of quant-ph/0701002 Electronic address: santini@cbpf.br 1

I. INTRODUCTION There is an increasing interest on the application of the Bohm - de Broglie (BdB) interpretation of quantum mechanics to several areas as quantum cosmology, quantum gravity and quantum field theory, see for example [1][2][3][4][5]. In this work we develope a causal approach to the Einstein- Podolsky-Rosen (EPR) problem i.e. a two-particle correlated system. We attack the problem from the point of view of quantum field theory considering the two-particle function for a scalar field. In the BdB approach it is possible to interpret the quantum effects as modifying the geometry in such a way that the scalar particles see an effective geometry. As a first example we show that a two dimensional EPR model, in a particular quantum state and under a non-tachyonic approximating condition, can exhibit an effective metric that is analog to a two dimensional black hole (BH). In a second example, for a two-dimensional static EPR model we are able to show that quantum effects produces an effective geometry with singularities in the metric, a key ingredient of a bridge construction or wormhole. Following a suggestion by Holland [6] this open the possibility of interpret the EPR correlations as driven by an effective wormhole, through which physical signals can propagate. This letter is organized as follows: in the next section we recall the basic features of a relativistic scalar field and we write the two-particle wave s equation. Then we applies the BdB interpretation to it and, from the generalized Hamilton-Jacobi equation, we visualize the quantum potential as generating an effective metric. Having done that we next study two dimensional EPR models and we show how the effective metric appears, being a BH metric in a first example and a particular metric with singularities in a second one. Last section is for conclusions. II. SCALAR FIELD THEORY AND ITS BDB INTERPRETATION The Schrödinger functional equation for a quantum relativistic scalar field is given by Ψ(φ, t) i h t = { 1 d 3 x h 2[ 2 δ 2 ] } δφ + 2 ( φ)2 +U(φ) Ψ(φ, t), (1) where Ψ(φ, t) is a functional with respect to φ(x) and a function with respect to t. A normalized solution Ψ(φ, t) can be expanded as 2

Ψ[φ, t] = d 3 k 1...d 3 k n c n ( k n, t)ψ n, k n[φ] (2) n=0 where k (n) {k 1,...k n } and k j is the momenta of particle j, being the functionals Ψ n, k (n)[φ] a complete ortonormal basis. For free fields the n-particle wave function is given by (see for example [7][8]) where x (n) {x 1,...x n }. The wave function (3) satisifies ψ n ( x (n), t) = 0 ˆφ(t,x 1 )...ˆφ(t,x n ) Ψ, (3) n [( µ µ ) j + m 2 ]ψ n ( x (n), t) = 0. (4) j=0 For the two-particle wave function we have which is 2 [( µ µ ) j + m 2 ]ψ 2 ( x (2), t) = 0 (5) j=1 [( µ µ ) 1 + m 2 ]ψ 2 (x 1,x 2, t) + [( µ µ ) 2 + m 2 ]ψ 2 (x 1,x 2, t) = 0. (6) In order to apply the BdB interpretation we substitute ψ 2 = R exp(is/ h) in eq. (6) obtaining two equations, one of them for the real part and the other for the imaginary part. The first equation reads µ 1 S µ1 S m 2 h 2 h 2 ( µ µ ) 1 R R that can be written as + µ 2 S µ2 S m 2 h 2 h 2 ( µ µ ) 2 R R = 0 (7) η µ 1ν 1 µ1 S ν1 S + η µ 2ν 2 µ2 S ν2 S = 2M 2 (8) where with M 2 m 2 h 2 (1 2m2 h 2) (9) 3

being and 1 + 2 (10) 1 = h 2 ( µ µ ) 1 R R The equation that comes from the imaginary part is (11) 2 = h 2( µ µ ) 2 R. (12) R η µ 1ν 1 µ1 (R 2 ν1 S) + η µ 2ν 2 µ2 (R 2 ν2 S) = 0 (13) which is a continuity equation. Equation (8) is the Hamilton-Jacobi equation for a 2-particle system of mass 2M. The term is the quantum potential whose effect can be interpreted as a modification of the system s mass with respect to its classical value 2m. We see that M 2 is not positive-definite, feature that is associated to the existence of tachyonic solutions. To overcome this problem one can, for example, choose initial conditions in such a way that a positive M 2 value is obtained for an initial time. Because continuity equation this will be true for any time. Now, following an idea proposed by L. De Broglie [9] and fruitfully applied to gravity in [3] and [4], we rewrite the Hamilton-Jacobi equation (8) as η µ 1ν 1 (1 ) µ 1 S ν1 S + ηµ2ν2 (1 ) µ 2 S ν2 S = 2m 2 h 2. (14) 2m h 2 2m h 2 Here η µν is the Minkowski metric and we can interpret the quantum effects as realizing a conformal transformation of the metric in such a way that the effective metric is and eq. (14) can be written as g µν = (1 2m 2 h 2)η µν (15) D µ1 SD µ 1 S + D µ2 SD µ 2 S = 2m 2 h 2 (16) where D µ stands for a covariant differentiation with respect to the metric g µν and it was used that µ S = D µ S because S is a scalar. 4

Then, as was already shown by Shojai et al. in [3], the quantum potential modify the background geometry giving a curved space-time with metric given by eq. (15). In some sense, according Shojai, space-time geometry have a dual aspect: sometimes looks as (semiclassical) gravity and sometimes looks as quantum effects. III. TWO DIMENSIONAL MODELS Two dimensional models have been studied for a long time in order to address subjects as gravitational collapse, black holes and quantum effects. We analyse two dimensional models because some aspects in a low dimensional model have the same behavior as the more realistic four-dimensional models 1. In this section we are going to show two examples in two dimensions of a two-particle EPR system that exhibit an effective metric as in eq. (15). Because of the singularities of this effective metric it ressembles a two dimensional BH type solution, as presented in [4] [10], and this is the key that could allow us to connect the EPR correlations with an effective wormhole geometry. Before present our examples we briefly recall the basic features of that solution. The two dimensional BH presented in [10] consist of a point particle situated at the origin, with density ρ = M 2πG N δ(x), where M is the mass of the particle and G N is the Newton gravitational constant. A symmetric solution of the field equation of this problem without cosmological constant (see [10] section 3) is given by the metric: ds 2 = (2M x C)dt 2 + dx 2 2M x C where C is a constant. The sign of the quantity α 2M x C determines the type of region: timelike regions are for positive α and spacelike regions are for negative α. The points at which α(x) = 0 are coordinate singularities and locate the event horizons of the space, which for the present case are at: (17) x = C 2M. (18) The horizons only exist if C and M are of the same sign. For example for C and M positives there are two horizons, at x h = C, with the source located in a spacelike 2M 1 Furthermore low dimensional models appears naturally in effective string theories 5

region sourrounded by two timelikes ones. In particular if C = 0 and M > 0 there is only one horizon at x = 0 sourrounded by a timelike region. The metric (17) can be cast in conformal coordinates (t, y) (see [10] section 3). For example in the case M, C positives, the transformation x = C+e2My 2M, for x ( C, ), transform the metric in: 2M ds 2 = e 2My ( dt 2 + dy 2 ). (19) In the following part of this section we consider two dimensional models for the EPR problem. First example: non-tachyonic EPR model. For the two-particle system, we obtained a conformal transformation of the metric where the conformal factor is associated with the quantum potential, eq. (15).Here we consider the non tachyonic case i.e. we need to impose the possitivity of M 2, and one way to do that is approximating eq. (9) by an exponential, assuming that M 2 = m 2 h 2 exp( 2m2 h 2) (20) which differs from Eq (9) at order h 4. Then, with this assumption, we have for the effective metric, eq. (15): g µν = exp( 2m 2 h 2)η µν. (21) Now we assume that our two dimensional two-particle system satisfies an EPR condition, i. e, their positions x 1 and x 2 are correlated in such a way that x 1 + x 2 = constant[11]. Then the dependence of the quantum potential on coordinates x 1 and x 2 can be cast as a function of only one coordinate, say x 1, and defining z x 1 we can write, with a little abuse of notation, being the line element = (x 1, x 2 ) = (z) (22) ds 2 = exp ( (z) 2m 2 h 2)( dt2 + dz 2 ). (23) 6

Defining a coordinate transformation from z to y by mean 2My = (z) 2m 2 h 2 and assuming a particular quantum state such that d dz = 4Mm2 h 2 with M a constant, the line element ds 2 in (t, y) conformal coordinates is ds 2 = e 2My ( dt 2 + dy 2 ). (24) Now we can make a coordinate transformation from y to x by mean 2Mx = C + e 2My (25) where C is a constant and x ( C M, ). The line element ds2 in terms of the (t, x) coordinates is given now by ds 2 = (2M x C)dt 2 + dx 2 2M x C where we made a symmetrical extension for the others values of x other than ( C, ) (see 2M [10]). Then we arrived to the same metric defining a two dimensional BH type solution, eq. (17) and, in some sense, we can consider it as an analog model for the particular EPR problem analysed. The coordinate singularities are located at x = C, at the poles of the 2M quantum potential (z). Second example: a static model. In the last part of this section we shall show a very simple example where singularities in the transformed metric appears. We consider again the two-particle wave function of a scalar field in two dimensions. Following the approach of Alves in [4] we shall see that, for the static case, it is possible to obtain a solution as a metric of the curved space-time (the effective metric) which comes from Eqs. (8) and (13). For the present case these equations are: (26) η 11 x1 S x1 S + η 11 x2 S x2 S = 2m 2 h 2 (1 2m h 2) (27) x1 (R 2 x1 S) + x2 (R 2 x2 S) = 0 (28) Now we consider that our two-particle system satisfies the EPR condition p 1 = p 2 which in the BdB interpretation, using the Bohm guidance equation p = x S, can be written as x1 S = x2 S. (29) 7

Using this condition in eq. (28) we have and this equation has the solution x1 (R 2 x1 S) = x2 (R 2 x1 S) (30) where G is an arbitrary (well behaved) function of x 1 + x 2. Substituting eq. (31) in eq.(27) we have R 2 S x 1 = G(x 1 + x 2 ) (31) 2m 2 h 2 (1 2m h 2) = 2( G R 2)2 (32) and taking into account the expressions (10), (11) and (12) for the quantum potential, the last equation reads 8G 2 + ( x1 (R 2 )) 2 2R 2 2 x 1 R 2 + ( x2 (R 2 )) 2 2R 2 2 x 2 R 2 8m 2 R 4 = 0. (33) A solution of this nonlinear equation is R 4 = 1 2m 2(C 1 sin(m(x 1 + x 2 ) + C 2 )) (34) provided an adequated function G(x 1 +x 2 ), which can be obtained from (33) by substituting the solution. In order to interpret the effect of the quantum potential we can re-write eq. (27) using (32) obtaining or η 11 x1 S x1 S + η 11 x2 S x2 S = 2( G R 2)2 (35) that we write as m 2 η11 ( G R 2 ) 2 x 1 S x1 S + m 2 η11 ( G R 2 ) 2 x 2 S x2 S = 2m 2 (36) g 11 x1 S x1 S + g 11 x2 S x2 S = 2m 2 (37) 8

and then we see that the quantum potential was absorbed in the new metric g 11 which is: g 11 = 1 g = η 11 G 11 m 2( = C2 1 + 3C2 16m 2 1 sin 2 (m(x 16m 2 1 + x 2 ) + C 2 ) R 2)2 C 1. (38) sin(m(x 2m 2 1 + x 2 ) + C 2 ) We can see that this metric is singular at the zeroes of the denominator in (38). According to the model reviewed at the begining of this section, this is characteristic of a two dimensional BH solution (see [4] and [10] ). Then our two-particle system see an effective metric with singularities, a fundamental component of a whormhole [12], through which physical signals can propagate 2. IV. CONCLUSION We studied the two-particle state of a scalar field under the EPR condition, for the two dimensional case in two situations, a non-tachyonic case and a static one. We found that the quantum potential can be interpreted as realizing a conformal transformation of the Minkowski metric to an effective metric. In the first situation this effective metric is analog to a BH metric and in the second one this metric present singularities, a key ingredient of a bridge construction or whormhole. This open the possibility, following a suggestion by Holland [6], of interpret the EPR correlations of the entangled particles as driven by an effective wormhole. Obviously a more realistic (i.e. four dimensional) and more sophisticated model (i.e. including the spin of the particles) must be studied. 2 It is interesting to note that a wormhole coming from a (Euclidean) conformally flat metric with singularities was shown by Hawking [13]. Consider the metric: with ds 2 = Ω 2 dx 2 (39) Ω 2 = 1 + b 2 (x x 0 ) 2. (40) This looks like a metric with a singularity at x 0. However, the divergence of the conformal factor can be though as the space opening out to another asymptotically flat region connected with the first one by mean a wormhole of size 2b. 9

Acknowledgments I would like to thank Prof. Nelson Pinto-Neto, from ICRA/CBPF, Prof. Sebastião Alves Dias, from LAFEX/CBPF, Prof. Marcelo Alves, from IF/UFRJ, and the Pequeno Seminario of ICRA/CBPF for useful discussions. I would also like to thank Ministério da Ciência e Tecnologia/ CNEN and CBPF of Brazil for financial support. [1] Pinto-Neto N. and Santini E. S., Phys. Rev. D59 (1999) 123517. [2] Pinto-Neto N. Santini E. S., Gen. Relativ. Gravit. 34 (2002) 505. [3] Shojai F. and Golshani M., Int. J. Mod. Phys.A13 No 4 (1998) 677-693. [4] Alves M., Mod. Phys. Lett. A 14 No. 31 (1999) 2187-2192. [5] Nikolić H., Found. Phys. Lett. 17 (2004) 363-380; e-print Archive: quant-ph/0208185. [6] Holland P. R., The uantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of uantum Mechanics (Cambridge University Press, Cambridge, 1993) Pag. 482. [7] Schweber S. S., An Introduction to Relativistic uantum Field Theory, (Harper and Row, 1961). [8] Long D. V. Shore G. M., Nuc. Phys. B 530 (1998) 247-278; e-print Archive: hep-th/9605004. [9] De Broglie L., Non Linear Wave Mechanics, (Elsevier Publishing Company, Amsterdam, 1960) Pag. 119. [10] Mann R., Shiekh A. Tarasov L., Nucl. Phys. B 341 (1990) 134. [11] Einstein A., Podolsky B. and Rosen N., Phys. Rev. 47(1935) 777-780. [12] Visser M., Lorentzian Wormholes: From Einstein to Hawking (AIP Series in Computational and Applied Mathematical Physics, 1996) [13] Hawking S. W., Phys. Rev. D37 4 (1988) 904-910. 10