arxiv: v1 [math.mg] 5 Oct 2015

Similar documents
Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Garnir Polynomial and their Properties

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Present state Next state Q + M N

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Numbering Boundary Nodes

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

1 Introduction to Modulo 7 Arithmetic

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

CS 461, Lecture 17. Today s Outline. Example Run

Trees as operads. Lecture A formalism of trees

COMP108 Algorithmic Foundations

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

0.1. Exercise 1: the distances between four points in a graph

Planar Upward Drawings

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Constructive Geometric Constraint Solving

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

Computational Biology, Phylogenetic Trees. Consensus methods

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

QUESTIONS BEGIN HERE!

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

12. Traffic engineering

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

CS 241 Analysis of Algorithms

CS September 2018

UNCORRECTED PAGE PROOFS

arxiv: v1 [cs.ds] 20 Feb 2008

Chapter 9. Graphs. 9.1 Graphs

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Designing A Concrete Arch Bridge

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

QUESTIONS BEGIN HERE!

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

This chapter covers special properties of planar graphs.

TOPIC 5: INTEGRATION

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

Seven-Segment Display Driver

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Walk Like a Mathematician Learning Task:

Steinberg s Conjecture is false

Discovering Pairwise Compatibility Graphs

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

Analysis for Balloon Modeling Structure based on Graph Theory

Polygons POLYGONS.

Aquauno Video 6 Plus Page 1

Solutions to Homework 5

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

Section 3: Antiderivatives of Formulas

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

EE1000 Project 4 Digital Volt Meter

Module 2 Motion Instructions

Properties of Hexagonal Tile local and XYZ-local Series

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

Chem 104A, Fall 2016, Midterm 1 Key

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

arxiv: v1 [math.co] 15 Dec 2015

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

Jonathan Turner Exam 2-10/28/03

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Last time: introduced our first computational model the DFA.

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Problem solving by search

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Transcription:

onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington othll Th prolm of lssifying th onvx pntgons tht mit tilings of th pln is long-stning unsolv prolm. Prvious to this rtil, thr wr 14 known istint kins of onvx pntgons tht mit tilings of th pln. Fiv of ths typs mit til-trnsitiv tilings (i.. thr is singl trnsitivity lss with rspt to th symmtry group of th tiling). Th rmining 9 typs o not mit til-trnsitiv tilings, ut o mit ithr 2- lok trnsitiv tilings or 3-lok trnsitiv tilings; ths r tilings ompris of lustrs of 2 or 3 pntgons suh tht ths lustrs form til-2-trnsitiv or til-3-trnsitiv tilings. In this rtil, w prsnt som omintoril rsults onrning pntgons tht mit i-lok trnsitiv tilings for i N. Ths rsults form th sis for n utomt pproh to fining ll pntgons tht mit i-lok trnsitiv tilings for h i N. W will prsnt th mthos of this lgorithm n th rsults of th omputr srhs so fr, whih inlus omplt lssifition of ll pntgons mitting 1-, 2-, n 3-lok trnsitiv tilings, mong whih is nw 15th typ of onvx pntgon tht mits til-3-trnsitiv tiling. Kywors: tiling, pntgon 1. Prliminris pln tiling T is ountl fmily of los topologil isks T = {T 1, T 2,...} tht ovr th ulin pln 2 without gps or ovrlps; tht is, T stisfis 1. i N T i = 2, n Prprint sumitt to rxiv Otor 6, 2015

2. int(t i ) int(t j ) = whn i j. Th T i r ll th tils of T. If th tils of T r ll ongrunt to singl til T, thn T is monohrl with prototil T n w sy tht th prototil T mits th tiling T. Th intrstion of ny two istint tils of T n st of isolt rs n points. Ths rs r ll th gs of T, n th isolt points, long with th npoints of th gs, r ll th vrtis of T. In this ppr, only tilings whos tils r onvx polygons r onsir. To istinguish twn fturs of th tiling n fturs of th polygons omprising th tiling, th stright sgmnts forming th ounry of polygon will ll its sis n th npoints of ths stright sgmnts will ll its ornrs. If th ornrs n sis of th polygons in tiling oini with th vrtis n gs of th tiling, thn th tiling is si to g-to-g. symmtry of T is n isomtry of 2 tht mps th tils of T onto tils of T, n th symmtry group S(T ) of T is th olltion of suh symmtris. If S(T ) ontins two nonprlll trnsltions, T is prioi. Two tils T 1, T 2 T r si to quivlnt if thr is n isomtry σ T suh tht σ(t 1 ) = T 2. If ll tils of T r quivlnt, T is si to til-trnsitiv (or isohrl). Similrly, if thr r xtly k istint trnsitivity lsss of tils of T with rspt to S(T ), thn T is til-ktrnsitiv. Th til-trnsitiv tilings of th pln hv n lssifi [4], n this lssifition will ntrl to th mthoology prsnt in this rtil. Th tils of T r uniformly oun if thr xist prmtrs u, U > 0 suh tht vry til of T ontins isk of rius u n is ontin in isk of rius U. tiling T is norml if thr onitions hol: 1. h til of T is topologil isk, 2. Th intrstion of ny two tils of T is onnt st, n 3. Th tils of T r uniformly oun. Th pth of T gnrt y th isk (r, P ) of rius r ntr t point P is th st of tils (r, P ) T tht mt (r, P ), long with ny itionl tils in T rquir to mk th union of th tils in (r, P ) los topologil isk. Th numrs of tils, gs, n vrtis of T ontin in (r, P ) will not y t(r, P ), (r, P ), n v(r, P ), rsptivly. Th following is funmntl rsult onrning norml tilings. Thorm 1 (Normlity Lmm [3]). Lt T norml tiling. Thn for 2

ny rl numr x > 0, t(r + x, P ) lim r t(r, P ) = 1. norml tiling T is ln if th following limits xist. v(t ) = lim r v(r, P ) t(r, P ) n (T ) = lim r (r, P ) t(r, P ) (1) ln tilings hv th following ni proprty. Thorm 2 (ulr s Thorm for Tilings [3]). For ny norml tiling T, if ithr of th limits v(t ) or (T ) xists (n is finit), thn so os th othr. Morovr, if ithr of th limits v(t ) or (T ) xists, T is ln n v(t ) = (T ) 1. (2) 1.1. Monohrl Tilings y onvx Pntgons This rtil is onrn with monohrl tilings of th pln in whih th prototil is onvx pntgon. It is known tht ll tringls n quriltrls (onvx or not) til th pln. It is lso known tht thr r xtly 3 lsss of onvx hxgons tht til th pln [5]. Figur 1 shows how th onvx hxgons tht mit tilings of th pln r lssifi in trms of rltionships mong thir ngls n sis. 3

F f () ll hxgon () + + = 2π; = () + + = 2π; = ; = () = = = 2π/3; = ; = ; = f Figur 1: Th thr lsss of onvx hxgons tht mit tilings of th pln. It hs lso n shown tht onvx n-gons with n 7 mit no tilings of th pln [3, 8]. Prvious to this rtil, thr wr 14 known istint lsss of onvx pntgons tht til th pln (Figur 2). Th lling systm for pntgons is th sm s tht of th hxgons in Figur 1. Th first 5 typs mit til-trnsitiv tilings of th pln; it ws shown y K. Rinhrt tht ny onvx pntgon mitting til-trnsitiv tiling of th pln is on of ths 5 typs. Typs 6-8 wr isovr y Krshnr [7], Typ 9 n 11-13 wr isovr y M. Ri, n Typ 10 y R. Jms [10]. In [10],. Shttshnir givs n intrsting history (up to 1978) of th prolm of lssifying onvx pntgons tht mit tilings of th pln. Sin tht tim, th 14th typ of pntgon ws isovr in 1985 y R. Stin, n lrg tgoris of pntgons hv n shown to mit only tilings from mong th knows 14 typs; this inlus quiltrl pntgons ([1, 6]) n pntgons tht mit g-to-g tilings [2]. In this rtil w will prsnt nw typ of pntgon (Typ 15), s wll s th rsults of our xhustiv omputr srh for onvx pntgons tht mit i-lok trnstiv tilings for i = 1, 2, n 3. 4

Typ 1 + = π Typ 2 + = π; = Typ 3 = = = 2π/3; =, = + Typ 4 = = π/2; =, = Typ 5 = 2 = π/2; =, = Typ 6 + = π, = 2; = =, = Typ 7 2 + = 2π, 2 + = 2π; = = = Typ 8 2 + = 2π, 2 + = 2π; = = = Typ 9 2 + = 2π, 2 + = 2π; = = = Typ 10 = π/2, + = π, 2 = π,2 + = 2π; = = + Typ 11 = π/2, + = π, 2 + = 2π; = = 2 + Typ 12 = π/2, + = π, 2 + = 2π; 2 = + = Typ 13 = = π/2, 2 = 2 = 2π ; =, 2 = Typ 14 = π/2, 2 + = 2π, + = π; = = 2 = 2 Figur 2: Pntgon Typs 1-14 5

n i-lok trnsitiv tiling T is monohrl tiling y onvx pntgons tht ontins pth onisting of i pntgons suh tht (1) T onsists of ongrunt imgs of, n (2) this orrsponing tiling y opis of is n isohrl tiling, n (3) i is th minimum numr of pntgons for whih suh pth xists. Suh pth will ll n i-lok, n th orrsponing isohrl tiling will not y I. 3 4 3 3 4 3 4 3 v 4 3 3 3 3 3 v 3 3 () typ 7 tiling T () orrsponing tiling I tiling y 2-loks. Figur 3: pntgon tiling T n orrsoning 2-lok tiling I If v is vrtx of oth T n I, thn lt V T (v) not th vln of v in T n lt V I (v) not th vln of v in I. For xmpl, for th signt vrtx v in Figur 3, w s tht V T (v) = 4, whil V I (v) = 3. Not tht ny prioi tiling y onvx pntgons is nssrily i-lok trnsitiv for som i (onsir th pntgons omprising funmntl rgion of th prioi tiling). It woul rsonl to onjtur tht ny unmrk onvx pntgon tht mits tiling of th pln mits t lst on prioi tiling; tht is, it woul rsonl to onjtur tht thr r no prioi onvx pntgons. If this onjtur is tru, thn ll onvx pntgons tht mit tilings of th pln lso mit t lst on i-lok trnsitiv tiling. Thus, th lss of pntgons ing stui in this rtil my wll nompss ll possil pntgons tht mit tilings of th pln. 2. omintoril Rsults onrning i-lok Trnsitiv Tilings Suppos tht onvx pntgon mits n i-lok trnsitiv tiling T, lt n i-lok of T, n lt P ny pntgon in. fin no of P to ny vrtx of T tht lis on P. Not tht th ornrs of P r 6

nssrily nos, ut P my hv nos t othr points sis its ornrs if th tiling is not g-to-g. Thorm 3. For n i-lok trnsitiv tiling T with i-lok, suppos hs xtly n nos, ount with multpliity t nos shr y multipl pntgons of, n lt α j not th vln in T of th j-th no of. Thn T is ln with v(t ) = 1 i n j=1 1 α j (3) n (T ) = n 2i. (4) Proof. ll til-trnsitiv tilings r prioi, n from this it follows tht T is prioi s wll. itionlly, ll prioi tilings r ln [3], n so T is ln, n so th limits v(t ) n (T ) xist. To fin formul for v(t ), lt P ny point of th pln n lt r > 0. In th pth (r, P ), v(r, P ) t(r, P ) i n j=1 1 α j. Th rson this stimt is not xt is u to i-loks n prtil i-loks on th ounry of (r, P ) whos pntgons r not ompltly surroun y othr pntgons in th pth. Osrv tht for lrg r, t(r 2iU, P ) i n j=1 1 α j v(r, P ) t(r + 2iU, P ) i n j=1 1 α j, (5) whr U is th irumprmtr of T. Th lowr oun on v(r, P ) hols sin no i-lok of (r 2iU) mts ny i-lok on th ounry of (r, P ), n similrly th uppr oun follows from th ft tht no i-lok of (r, P ) mts ounry i-lok of (r+2iu). Upon iviing Inqulity 5 through y t(r, P ), ltting r, n pplying th Normlity Lmm, w rriv t th sir rsult. similr rgumnt stlishs qution 4. 7

Sustituting qutions 3 n 4 in to qution 2 yils th following rsult. orollry 1. For n i-lok trnsitiv tiling whos i-loks h hv n nos (ount with multipliity), w hv th following iophntin qution. n j=1 1 = n 2i α j 2 (6) Not tht sin h pntgon hs t lst 5 nos, w hv n 5i. lso, not tht th lft-hn si of qution 6 is mximiz whn α j = 3 for vry j, whih implis tht n 6i. orollry 2. For n i-lok trnsitiv tiling whos i-loks h hv n nos (ount with multipliity), w hv 5i n 6i. (7) Inqulity 7 is ni s it stlishs n uppr oun on just how ly non-g-to-g n i-lok trnsitiv tiling n. onsquntly, for h positiv intgr i, thr r only finit numr of typs of onvx pntgon tht mit i-lok trnsitiv tilings. W not fw othr intrsting onsquns of Thorm 3. Lt 3 min n 3 mx not th minimum n mximum numr of 3-vlnt nos of n i-lok with n nos (ount with multipliity). Noti tht th lft-hn si of qution 6 is minimiz whn s fw s possil of th α j s r 3 s, so 3 min is trmin y solving th qution for 3 min, otining n 2i 2 = 3 min 3 + n 3 min 4 3 min = 3n 12i. (8) Similrly, sin th numr k of 3-vlnt nos in n i-lok must stisfy w s tht k 3 n 2i, 2 3n 6i 3 mx =. (9) 2 8

W my mk nothr osrvtion onrning qution 6: If p is th vrg vrtx vln, thn so n y Inqulity 7, w s tht n p = n 2i, 2 p = 2n 2n i, 3 p 10 3. (10) p = 3 orrspons to th s tht pntgons of T hv on vrg 6 nos (llowing for stright ngls in non-g-to-g tilings y pntgons), n p = 10/3 orrspons to th s tht th tiling is g-to-g (orrsponing to rsult in [1]). This mks it lr tht in ny i-lok trnsitiv tiling, thr will som 3-vlnt nos n (xpt whn p = 3) som nos with vln k 4. For spifi vlus of n n i, ll solutions (for th α j ) of qution 6 n foun. If α 1, α 2,..., α n is solution, w will not tht solution y α 1.α 2.....α n n ll it n (i, n)-lok spis. W will us xponnts to init rpt vlus of α i. For xmpl, in Figur 3, th 2-lok is of spis 4.3.3.4.4.4.3.3.3.3 = 4 4.3 6. In Tl 1, ll (i, n)-lok spis r list for n 3. 3. Possil Topologil Typs for (i, n)-lok Spis Lt T n i-lok trnstiv tiling y ongrunt onvx pntgons n lt I th orrsponing isohrl tiling y i-lok. Sin I is isohrl, thn it is on of 11 topologil typs, n from mong ths 11 topologil typs, th mximum vrtx vln is 12 [4]. Furthr, sin t most i pntgons mt t ny no of, thn in qution 6, w must hv α j 12i (11) for ll j. Inqulity 11 nsurs tht qution 6 hs finitly mny solutions for ny i n tht ths solutions n, for smll vlus of i, quikly foun using simpl omputr lgorithm. Th numrs in {V I (v) v is vrtx of I T } r xtly th numrs ppring in th topologil typ for I, n this osrvtion givs ris to th following fts. 9

Lmm 1. vrtx v of oth I n T stisfis 1. V I (v) V T (v) 2. V T (v) 3i if I hs topologil typ [3 6 ] 3. V T (v) 4i if I hs topologil typs [3 3.4 2 ], [3 2.4.3.4], or [4 4 ] 4. V T (v) 6i if I hs topologil typs [3 4.6], [3.6.3.6], [6 3 ], or [3.4.6.4] 5. V T (v) 8i if I hs topologil typ [4.8 2 ] 6. V T (v) 12i if I hs topologil typ [3.12 2 ] Rfrring to Figur 3, w s tht th inqulity of Lmm 1, Prt 1 n not n qulity. Th nxt rsults onrns thos vrtis of T tht r not lso vrtis of I ; ths vrtis r in th intrior of gs in I, n s suh, ths vrtis ply ky rol in how opis of i-loks n mt in I. 3.1. jny onitions for i-loks Lt n i-lok for n i-lok trnsitiv tiling T, n lt β 1, β 2,..., β n th vrtis of T on th ounry of, tkn in orr with rspt to n orinttion on. Lt i not th numr of pntgons of tht r inint with β i. Thn th ounry o of is th finit squn () = 1 2... n. For xmpl, th 2-lok of Figur 3 hs ounry o () = 21112111. us is prototil for isohrl tiling I, thn hs n ssoit inin symol tht prsris th mnnr in whih opis of r surroun y inint opis of. For xmpl, if I is of isohrl typ IH12, whih hs topologil typ [3 6 ] n inin symol [ + + ; ], thn tils th pln s topologil hxgon, n its ounry is prtition into 6 rs tht must mth on nothr oring to th inin symol (w rfr th rr to [3] or [4] for n xplntion of inin symols). vli prtition of th ounry of must omptil with this inin symol. Th npoints of th rs forming th prtition of th ounry of will init y pling ovr rs on th orrsponing ntris of (); w will ll ounry o so mrk prtition ounry o n not it y (). For xmpl, th 3-lok of Figur 3 hs prtition ounry o () = 2 1 1 12 1 11. 10

Th unmrk lmnts in () orrspon to th vrtis of T on th ounry of tht r not vrtis of I. Thus, n g of of lngth k orrspons to susqun of () of th form = i i+1 i+2 i+k 1 i+k. s in th inin symols for th isohrl typs, w will us suprsripts to init th orinttion of gs with rspt to thir mothr tils. Lmm 2 (Th Mthing Lmm). Lt 1 = i i+1 i+2... i+k 1 i+k n 2 = j j+1 j+2... j+k 1 j+k two lngth k gs on th ounry of, llowing for th possiility tht 1 = 2. 1. + 1 my mt + 2 (or 1 my mt 2 ) if i+t + j+k t = V T (β i+t ) = V T (β j+k t ) for h intgr t, 1 t k 1. 2. + 1 my mt 2 if i+t + j+t = V T (β i+t ) for h intgr t, 1 t k 1. 3. 1 my mt 2 if oth of th prvious two onitions hol. 4. (1s nnot mt 1s) In prtiulr, in th s tht + 1 mts + 2, w must hv i+t + j+k t 3, so it n nvr th s tht i+t = 1 = j+k t. Similrly, in th s tht + 1 mts 2, it nvr hppn tht i+t = 1 = j+t. 5. (Intrior vrtis nnot too lrg) For h vrtx β in th intrior of n g on th ounry of, V T (β) 2i. us ny vrtx of th ounry of must mth with t lst on othr vrtx on n jnt opy of, th Mthing Lmm implis th following rsult, whih n us to limint possil topologil typs for givn (i, n)-lok spis. Lmm 3. Lt of (i, m 1 +m 2 + +m k )-lok spis typ α m 1 1.α m 2 2.....α m k k. 1. If th ounry of ontins vrtx v i with V T (v i ) = α p > 2i n m p = 1, thn th topologil typ of I must ontin th numr α p. 2. If th ounry of ontins vrtis v i v j with α p = V T (v i ) = V T (v j ) > 2i n m p = 2, thn th topologil typ of I must ontin th numr α p twi. 11

3. If th ounry of ontins vrtx v i tht is inint with 2 pntgons of, α p = V T (v i ) > 2i, n m p = 2, thn th topologil typ of I must ontin th numr α p /2. Lmms 1, 2, n 3 n us to limint svrl topologil typs for givn (i, n)-lok spis. For xmpl, for th (1, 5)-lok spis 3 3.4 2, Lmm 1 Prt 1 sys possil topologil typs for I ontin t most thr 3s, t most two 4s, n no othr numrs. This lvs only [3 3.4 2 ] n [3 2.4.3.4]. For th (1, 5)-lok spis 3 4.6, th only possil topologil typ for I is [3 4.6]. In similr wy, w n limint possil topologil typs orrsponing to lrgr vlus of i. onsir th (3, 15)-lok spis 3 13.8.24. Th vrtx of vln 24 vry muh rstrits th possil topologil typs for I ; sin 24 > 6 3, Lmm 1 sys tht no vrtx of T n hv vln 24 n simultnously vrtx of I unlss th topologil typ of I hs vrtx of vln 8 or grtr. Furthr, sin 24 > 2 3, Lmm 2 Prt 5 gurnts tht no vrtx in T ut not in I n hv vln 24. Thus, I nnot of topologil typs [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [4 4 ], [3 4.6], [3.6.3.6], [6 3 ], or [3.4.6.4]. Thus, in ny 3-lok trnsitiv tiling of spis typ 3 13.8.24, th only possil topologil typs r [4.8 2 ] n [3.12 2 ]. ut, using Lmm 3 Prt 1, w n limint oth of ths two rmining topologil typs sin nithr of ths topologil typs ontins 24. s nothr xmpl, onsir th (4, 20)-lok spis 3 17.5.15 2. Sin 15 > 2 4, Lmm 3 Prts 2 n 3 implis tht th prmissil topologil typs for I must ontin 15 twi or 15/2. Noti tht thr r no topologil typs stisfying ths onitions. W provi on lst lmm tht rlts prtitions of th ounry of n i-lok to orrsponing possil topologil typs for th i-lok. Lmm 4. Lt = #1 s #non-1 s in (). 1. If > 6, os not mit til-trnsitiv tiling of th pln. 2. If = 6, mits only til-trnsitiv tilings of topologil typ [3 6 ], n vry mrk lmnt of () is 1. 3. If = 5, mits only til-trnsitiv tilings of hxgonl or pntgonl topologil typs, n vry mrk lmnt of () is 1. 4. If = 4, mits only til-trnsitiv tilings of hxgonl, pntgonl, or quriltrl topologil typs. For pntgonl n quriltrl 12

typs, vry mrk lmnt of () is 1, n for hxgonl typs, fiv 1 s of () must mrk. Lmm 4 is usful in fw wys. First, for prtiulr gnrliz (i, n)- lok, w my (t gln) limint rtin possil topologil typs from onsirtion. Sonly, this lmm rstilly limits th numr of wys tht () n prtition. In Tl 1, w hv orgniz th (i, n)-lok spis n th orrsponing possil topologil typs for i 3. (i, n) (i, n)-lok spis possil topologil typs for I (1, 5) 3 3.4 2 [3 3.4 2 ], [3 2.4.3.4] 3 4.6 [3 4.6] (1, 6) 3 6 [3 6 ] (2, 10) 3 8.4.12-3 8.6 2 [3 6 ], [3 4.6], [3.6.3.6] 3 7.4 2.6 [3 4.6] 3 6.4 4 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [4 4 ] (2, 11) 3 10.6 [3 4.6] 3 9.4 2 [3 6 ], [3 3.4 2 ], [3 2.4.3.4] (2, 12) 3 12 [3 6 ] (3, 15) 3 13.7.42, 3 13.8.24, 3 13.9.18, 3 13.10.15-3 12.4.5.20, 3 12.5 2.10, 3 11.4 3.12-3 13.12 2 [3 4.6], [3.12 2 ] 3 12.4.6.12 [4.6.12] 3 12.4.8 2 [3 3.4 2 ], [3 2.4.3.4], [4.8 2 ] 3 12.6 3 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [3 4.6], [3.6.3.6], [6 3 ] 3 11.4 2.6 2 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [4 4 ], [3 4.6], [3.6.3.6], [3.4.6.4] 3 10.4 4.6 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [4 4 ], [3 4.6] 3 9.4 6 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [4 4 ] (3, 16) 3 14.4.12-3 14.6 2 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [3 4.6], [3.6.3.6] 3 13.4 2.6 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [3 4.6], [3.4.6.4] 3 12.4 4 [3 6 ], [3 3.4 2 ], [3 2.4.3.4], [4 4 ] (3, 17) 3 16.6 [3 6 ], [3 4.6] 3 15.4 2 [3 6 ], [3 3.4 2 ], [3 2.4.3.4] (3, 18) 3 18 [3 6 ] Tl 1: ll (i, n)-lok spis for 1 i 3 4. n lgorithm for numrting ll pntgons miting i-lok trnsitiv tilings. For fix i, th following prour will trmin ll possil systms of qutions orrsponing to i-lok trnsitiv tilings. 13

1. numrt ll topologil i-lok forms with n nos (sujt to th rstrition tht 5i n 6i from Inqulity 7. This prt of th prour ws on y hn for i = 1, 2, 3, n 4. 2. For h topologil i-lok with ssign flt nos, gnrt vry possil lling of th onsitunt pntgons ngls n sis with,..., n,...,. 3. In vry wy possil, ssign th vlu of π to nos in th pntgons of th i-lok form hving mor thn 5 nos, lving h pntgon with xtly 5 unll nos. 4. For h i-lok form, gnrt vry prtition of th ounry into 3, 4, 5, or 6 onsutiv rs. 5. For h suh ounry prtition, trmin ll omptil isohrl typs. 6. For h fully-ll topologil i-lok, pply th jny symol of h omptil isohrl typ to th prtition in vry wy possil. 7. For h pplition of th jny symol, gnrt th orrsponing st of linr qutions rlting th sis n ngls of th pntgons of th i-lok n trmin if this systm of qutions is onsistnt. ny inonsistnt linr systms r isr. 8. For h onsistnt systm, trmin whthr or not th rsulting systm of qutions implis tht th pntgon is of prviously known typ. 9. For ny systm of qutions not intifi s prviously osrv typ, trmin if pntgon stisfying ths qutions is gomtrilly rlizl. Tht is, trmin whthr or not suh pntgon n itionlly stisfy th systm of qutions onsponing to 0 vtor sum for th sis unr th onstrint of positiv si lngths n ngl msur stritly twn 0 n π. W will illustrt pross for smpl 2-lok n, sprtly, smpl 3-lok. Whil ll of our rsults for numrting pntgons mitting 1-, 2-, n 3-lok trnsitiv wr trmin y singl utomt systm (xpt prts orrsponing to stps 1 n 9 ov), s oul-hk on our utomt lgorithm, w sprtly numrt th pntgons mitting 1-lok trnsitiv tilings ompltly y hn (ppnix ), n w sprtly numrt th pntgons mitting 2-lok trnstiv tilings prtilly y hn n prtilly using Mthmti o to utomt th ll pplitions n th linr systm solving. 14

4.1. Illustrting th lgorithm with 2-lok xmpl To filitt isussion of 2-loks in gnrl, w will us rgulr shps to rprsnt th pntgons omprising th 2-loks, vn though in ny tul 2- lok, th two (ongrunt) pntgons r irrgulr. In rprsnting 2-loks in gnrliz wy mks spotting flt nos visully pprnt, w will rprsnt pntgons hving 5 nos s rgulr pntgons, pntgons hving 6 nos (1 flt no) will rprsnt y rgulr hxgons, n pntgons hving 7 nos (2 flt nos) will rprsnt y rgulr hptgons. y Inqulity 7 th numr of nos n (ount with multipliity) in 2-lok stisfis 10 n 12, so thr r 4 wys to rprsnt 2-loks in trms of th numrs of nos; ths r pit in Figur 4. In ths topologil 2- loks forms, it is importnt to not tht in ny hxgon, on of th ornrs must rprsnt flt no, n in ny hptgon, 2 of th ornrs must rprsnt flt nos. () n = 10 () = 21112111 () n = 11 () = 211121111 () n = 12 () = 2111211111 () n = 12 () = 2111121111 Figur 4: ll possil topologil 2-loks forms Now, to illustrt th lgorithm outlin ov, for stp 1, lt us pik th topologil i-lok form ov rprsnt in Figur 4. For stps 2 n 3, without loss of gnrlity, ll th vrtis of th lft pntgon of Figur 5 with,,,, n. Th right pntgon, howvr, my in svrl iffrnt orinttions with rspt to th hoi of lling of th first pntgon. W hoos vril lls T, U, V, W, X, Y, n Z for th nos of this son pntgon (Figur 5). 15

T t Z z Y y u X U v V w W x Figur 5: Prtilly ll 2-lok Ths vrils my ssum th vlus,,,,, or π (two of th nos on th hptgon is flt no). For xmpl, th sustitution T =, U =, V =, W =, X =, Y = π, n Z = π yils th lling of nos in Figur 6. For stp 4, noti tht th ounry o for th 2-lok in this s is 2111211111, for whih from Lmm 4 is = 6. y Lmm 4, suh 2- lok n mit isohrl tilings of hxgonl typs only, n vry mrk lmnt of () must 1. Not lso tht two onsutiv 1 s nnot our in th intrior of ounry g of. ftr using Lmm 4 n our prvious osrvtion to filtr out unusl ounry prtitions, w r lft with th ounry prtitions in Tl 2, omplting stp 4 of th lgorithm. 16

2 1 1 12 1 11 11 2 11 12 1 11 1 1 2 11 12 11 1 1 1 2 1 1 12 11 1 11 2 1 112 1 1 11 1 2 11 121 1 1 1 1 2 1 1 12 11 11 1 2 1 112 1 11 1 1 21 1 12 1 1 1 11 2 1 1 121 1 1 11 2 1 112 11 1 1 1 21 1 12 1 1 11 1 2 1 1 121 1 11 1 2 1 1121 1 1 1 1 21 1 12 1 11 1 1 2 1 1 121 11 1 1 2 11 12 1 1 1 11 21 1 12 11 1 1 1 2 1 112 1 1 1 11 2 11 12 1 1 11 1 21 1 121 1 1 1 1 21 112 1 1 1 1 1 Tl 2: ounry prtitions for pntgon-hptgon (2, 12)-loks For our xmpl, lt us pik th prtition ounry o () = 21 1 12 1 1 11 1. In Figur 5 w hv init this prtition y putting whit ots on th nos mrking th n points of th prtition gs. For stp 5, w must trmin whih isohrl typs r omptil with this prtition. Th omptil isohrl typs r trmin y ompring th g lngths in () to th g trnsitivity lsss rquir for th isohrl typs, s wll s y pplying th Mthing Lmm. In oing this, w fin tht th omptil isohrl typs r IH4, IH5, n IH6. h omptil isohrl typ will in turn hk, ut to illustrt our mtho, lt us suppos our loks form n IH6 tiling. Th jny symol for IH6 is [ + + + + + f + ; + + f ]. For stp 6, w pply th IH6 jny symol in vry possil wy to this ll 2-lok, s init y th r rs ll with Grk hrtrs in Figur 6. In this s, thr is only on wy to pply th jny symol. 17

π φ - t δ + γ + y γ + ε + β - π t z π π z φ + δ - β + ε - π y + + Figur 6: IH6 lling of 2-lok ftr sustitutions For stp 7, from Figur 6, th following systm of qutions r gln. 2 + = 2π 2 + π = 2π 2 + = 2π + + π = 2π = + = y + z 2 + = t + y + z = t + y + z Finlly, for stp 8, upon simplfying th qutions n liminting th vri- 18

ls t, u,..., z, w rriv t th st of qutions 2 + = 2π = π/2 = 3π/2 = = 2. ny pntgon mitting suh 2-lok is thn quikly intifi s Typ 11 pntgon. 4.2. Illustrting th lgorithm with 3-lok xmpl For stp 1 of our lgorithm for fining ll onvx pntgons mitting 3-lok trnsitiv tilings, w trmin ll of th possil topologil 3-lok forms. This prt of th pross ws on y hn. In Figur 7, w show ll possil topologil 3-lok forms (up to rottion n rfltion). 19

5 5 5 5 5 6 5 5 7 5 5 8 5 5 6 5 6 5 5 6 6 5 6 6 5 6 7 5 5 6 7 5 7 5 7 5 5 7 6 5 7 6 5 5 8 5 8 5 5 8 5 6 5 6 6 5 7 6 6 6 6 6 6 5 5 5 5 5 6 5 5 7 5 5 8 5 6 5 5 6 6 5 6 7 5 7 5 5 7 6 5 8 5 6 5 6 6 5 7 6 6 6 5 5 5 5 6 5 5 6 6 5 7 5 5 6 7 5 5 8 6 6 6 Figur 7: ll topologil 3-lok forms. Th numr lling polygon rprsnts th numr of nos of tht polygon. To illustrt susqunt stps of th lgorithm, lt us hoos th 3-lok form of Figur 8 whih hs ounry o 1121121112 (strting t th top no n going ountrlokwis). For stps 2 n 3, w must ssign lls n π nos in vry possil wy to th nos of this lok. On suh wy of oing so is shown in Figur 8. 20

π Figur 8: ll 3-lok form. For stp 4, w must prtition th ounry of this 3-lok form, in vry possil wy, into 3, 4, 5, n 6 rs. Sin thr r 10 sis on th ounry of this 3-lok form, prtitioning th ounry orrspons to fining ll ylilly quivlnt intgr prtitions of th intgr 10 into 3, 4, 5, n 6 intgrs. For xmpl, onsir th intgr prtition {1, 1, 2, 2, 2, 2} of 10; this intgr prtition givs th numr of sis pr ounry g in prtition of th ounry into 6 rs. pplying this intgr prtition, w otin th prtition ounry o 1 1 21 12 11 12. In Figur 8, th vrtis ll with whit ots init th npoints of th gs forming this prtition of th ounry tht w will us to illustrt susqunt stps of th lgorithm. For stp 5, w trmin tht th isohrl typs omptil with this prtition r IH2, IH5, IH7, IH15, n IH16. Prforming stp 6, w hoos isohrl typ IH5 n pply th jny symol, [ + + + + + f + ; + + + f + ], in vry possil wy. In this prtiulr xmpl, thr is uniqu wy to pply th jny symol (up to symmtry), s shown in Figur 9. 21

ε + + β + γ + π + φ + φ + δ - ε + β + π δ + π γ - Figur 9: ll IH5 3-lok. For stp 7, w simply r off th qutions for th ngls n sis from Figur 9 to gt th following systm of qutions. 2 + + = 2p 2 + = 2π 2 + π = 2π 2 + = 2π 2 + = 2π = = = + 22

Upon simplifying this systm, w otin = π/3 = 3π/4 = 7π/12 = π/2 = 5π/6 = 2 = 2 = 2 For stp 8, upon ompring this systm to th prviously known 14 typs n ny sts of qutions w hv prviously intifi s impossil, w o not fin mth. This ls us to stp 9: W must trmin if this st of qutions n rliz y onvx pntgon, n if nw informtion is lrn out th si n ngl rltions in th pross, w must hk if this nw informtion yils known typ of pntgon. To tst if ths qutions n rliz y pntgon, w viw th gs of hypothtil pntgon stisyfing ths qutions s vtors n rquir tht th sum of ths vtors 0. This rsults in systm of two qutions: os + os( + ) os( + + ) + os( + + + ) = 0 (12) sin sin( + ) + sin( + + ) sin( + + + ) = 0 (13) Upon stting = 1 (w my st th sl ftor of th pntgon s w lik) n sustituting th known ngls n sis into qutions 12 n 13, w fin tht 1 = 2( 3 1) stisfis oth qutions. Upon insption, w s tht this pntgon still os not mth known typ. Thus, th pntgon with ths si lngths n ngls msurs is nw typ of pntgon (Typ 15). This til n orrsponing 3-lok-tiling y this til r shwon in Figur 10. 23

() = 60 = 1 = 135 = 1/2 = 105 = 1 2( 3 1) = 90 = 1/2 = 150 = 1/2 () 3-lok trnsitiv tiling y th Typ 15 pntgon. Th thik whit lins outlin th 3-lok, n th olors of th tils init th trnsitivity lsss of pntgons. Figur 10: Th Typ 15 pntgon 4.3. Untyp Solutions Our omputr o gnrt svrl sts of qutions whos solutions i not utomtilly fll into Typs 1-14 n lso oul not immitly ismiss s impossil. Initilly, ths solutions wr of xtrm intrst, for thy might hv rprsnt nw typs of pntgons! Howvr, it turn out tht ths solutions nnot stisfi y ny onvx pntgon, or gomtri onstrints will gnrt itionl informtion so tht suh pntgon must of known typ. W ll solutions suh s ths untyp. Our omputriz numrtion gnrt svrl untyp solutions. To kp this rtil to rsonl lngth, w will not provi th tils for how h of ths untyp solutions ws ronil, ut w mntion tht it rquir svrl sprt nontrivil rgumnts to show tht ths untyp solutions r ithr impossil or n tgoriz into th known 14 typs. Th following ss giv goo rprsnttion of th typs of rgumnts w gv for thm ll. 1. = 2π/3, = 2π/3, = π/2, = 2π/3, = π/2, = 2, =. 2. = π /2, = 2π 2, = /2, = = = 3. = π, =, =, =, n = 4. = π /2, = /2 + π/2, = π, = π/2, = 2 +, = + 5. = π /2, = /2 + π/2, = π, = π/2, + = 2, = 24

4.3.1. Untyp Solution 1 s is, this prtiulr systm looks vry similr to th qutions for Typ 3 pntgon, ut it os not quit mth. Howvr, upon stting th sl ftor of = 1 (so = 2), sustituting into qutions 12 n 13, n solving for n, w otin = 1 n = 3. With this nw informtion, tht = 1 =, w n positivly typ this st of qutions s Typ 3. 4.3.2. Untyp Solution 2 Using th rltions in this systm, w n ru qution 13 (with 1 = ) to ( ) + 4 sin(/2) sin + sin( + ) sin = 0. 2 Upon pplying th sum-to-prout intity for sin to th 1st n 4th trms n th 2n n 3r trms of this sum n ftoring, w rriv t th qution ( ) + 2 2 os [ sin + sin(/2)] = 0. 2 Solving this qution for (with th rstrition 0 <, < π) givs = /2 + π/2, = /2, or = /2 + π. Howvr, h of ths solutions for is impossil. If = /2 + π/2, thn sustitution into qution 12 givs = 2 os(/2) + 2 sin(/2), n so in orr tht positiv w must hv > π/2. ut this implis = /2 = + π/2 < 0. If = /2, sustitution into qution 12 rvls tht = 0. Lstly, if = /2 + π, thn sustitution into qution 12 gin implis = 0. Thus, this systm of qutions nnot rliz y onvx pntgon. 4.3.3. Untyp Solution 3 For th untyp solution 3, qution 13 long with th ft tht + + + + = 3π givs ( )[sin(/2) + sin()] = 0. Not tht for 0 < < π thr r no solutions for 0 = sin(/2) + sin() = sin(/2) + 2 sin(/2) os(/2) = sin(/2)[1 + 2 os(/2)]. Hn = so tht = = =. Sin + = π n =, ny pntgon stisfying ths qutions is Typ 2. 25

4.3.4. Untyp Solution 4 For untyp solution 4, without loss of gnrlity, ssum = 1. qution 13 givs 1 + 2 sin() + sin(/2) + ( 1 os() + sin()) = 0. Not tht 1 os() + sin() = 0 if n only if = π/2. In tht s, + = π n th pntgon is Typ I. Othrwis, suppos 1 os() + sin() 0. Solving for w gt = 1 sin(/2) 2 sin(). 1 os() + sin() Sustitution into qution 12 yils 1 + ( 2 os(/2 + sin(/2)) 1 + os() sin() = 0, from whih w fin tht = 1 2 os(/2) + sin(/2). Using tht > 0, w n 2 os(/2)+sin(/2) > 0 or tn(/2) > 2. Sin th tngnt funtion is inrsing on (0, π/2), w gt rtn(2) < /2 < π/2 or 2.21 2 rtn(2) < < π. Osrv tht 1 os() + sin() > 0 for 2.21 2 rtn(2) < < π. Th rquirmnt tht > 0 givs 1 sin(/2) 2 sin() > 0 so tht < 1 2 sin() sin(/2) 1 2 os(/2) + sin(/2) < 1 2 sin(). sin(/2) Sin th nomintors r positiv w must hv. This inqulity implis sin(/2) < (1 2 sin())( 2 os(/2) + sin(/2)). This inqulity is nvr stisfi for ngls stisfying 2.21 2 rtn(2) < < π. 26

4.3.5. Untyp Solution 5 For th 5th untyp solution, without loss of gnrlity, ssum = 1. qution 13 givs 1 2 os() + (os() + sin()) + sin(/2) = 0. Not tht os()+sin() = 0 if n only if = 3π/4. In this s, qution 13 rus to 1+ 2+ os(3π/8) = 0, yiling ngtiv vlu for. Thus, w my suppos os() + sin() 0. Solving for in th qution 13 givs = 1 + 2 os() sin(/2). os() + sin() Sustitution into qution 12 givs 2 2 sin() + (os(/2) + sin(/2)) os() + sin() = 0, n solving for yils = 2( 1 + sin()) os(/2) + sin(/2). From this w s tht < 0, n so this untyp solution is impossil. 4.4. Summry of rsults otin vi omputr for pntgons mitting 1-, 2-, n 3-lok trnsitiv tilings Numr of nos Pntgon Typs Foun n = 5 1, 2, 4, 5 n = 6 1, 2, 3 n = 10 1, 2, 4, 5, 6, 7, 8, 9 n = 11 1, 2, 4, 13 n = 12 1, 2, 4, 11, 12 n = 15 1, 2, 5, 6, 7, 9 n = 16 1, 2, 3, 4, 5, 6, 15 n = 17 1, 2, 10 n = 18 1, 2, 3, 10, 14 Tl 3: Typs of pntgons mitting i-lok trnsitiv tilings for i = 1, 2, n 3. 27

5. Futur Work: i 4 s i gts lrgr, th numrtion pross outlin rlir grows rpily in omplxity. For rltivly smll i, th mtho outlin in this rtil is pplil with th i of lustr of omputrs. W r urrntly in th pross of prossing th pntgons tht mit i-lok tilings whn i 4, n will upt this rtil with furthr rsults s w otin thm. Th min hllng in xtning this srh is in ffiintly unrstning untyp solutions tht ris. For givn untyp solution, on wy to tt if th solution n rliz y onvx pntgon involvs solving th systm of qutions givn y qutions 12 n 13. Howvr, for mny untyp solutions this systm hs 3 or mor vrils. Unrstning th solution st for suh systm is hllng. In, s sn in Stion 4.3, thr is no ovious wy to utomt th pross of whthr or not givn untyp solution n rliz y onvx pntgon, n if so, whthr or not itionl onitions will mrg tht for suh pntgon to mong th known typs. 6. Rfrns Rfrns [1] gin, O. (2004). Tiling th pln with ongrunt quiltrl onvx pntgons. J. omin. Thory Sr., 105(2):221 232. [2] gin, O. G. (2012). onvx pntgons tht til th pln (typs: 11112, 11122). Si. Èlktron. Mt. Izv., 9:478 530. [3] Grünum,. n Shphr, G.. (1977). Th ighty-on typs of isohrl tilings in th pln. Mth. Pro. mrig Philos. So., 82(2):177 196. [4] Grünum,. n Shphr, G.. (1987). Tilings n pttrns. W. H. Frmn n ompny, Nw York. [5] Hsh, H. n Kinzl, O. (1963). Flähnshluss. Systm r Formn lüknlos ninnrshlissnr Flhtil. Springr-Vrlg, rlin- Göttingn-Hilrg. [6] Hirshhorn, M.. n Hunt,.. (1985). quiltrl onvx pntgons whih til th pln. J. omin. Thory Sr., 39(1):1 18. 28

[7] Krshnr, R.. (1968). On pving th pln. mr. Mth. Monthly, 75:839 844. [8] Nivn, I. (1978). onvx polygons tht nnot til th pln. mr. Mth. Monthly, 85(10):785 792. [9] Rinhrt, K. (1918). Ür i Zrlgung r n in Polygon. Ph thsis, Univ. Frnkfurt.M. Nosk. [10] Shttshnir,. (1978). Tiling th pln with ongrunt pntgons. Mth. Mg., 51(1):29 44. 29

ppnix. Pntgons tht mit til-trnstiv tilings Pntgons tht mit til-trnsitiv tilings hv lry n lssifi [5], ut for th sk of illustrting our mthos, w will offr our own vrifition hr. ppnix.1. n = 5: tilings Pntgons tht mit g-to-g til-trnsitiv Suppos pntgon P mits til-trnstiv tiling T in whih h pntgon hs xtly 5 vrtis (i = 1, n = 5). From Tl 1, T must of topologil typ [3 3.4 2 ] or [3 2.4.3.4], or [3 4.6]. Ths topologil typs orrspons to isohrl typs IH21-IH29. For onvnin w list th inin symols of isohrl typs IH21-IH29 in Tl.4. Th gol is to xmin h possil isohrl typ for T to trmin onitions on th ngls n sis of P. Topologil Typ Isohrl Typ Inin Symol g lsss [3 4.6] IH21 [ + + + + + ; + + + + + ] αββγα [3 3.4 2 ] IH22 [ + + + + + ; + + ] αβγγβ IH23 [ + + + + + ; + + + + + ] αβγδβ IH24 [ + + + + + ; + + + + ] αβγδβ IH25 [ + + + + + ; + + + ] αβγγβ IH26 [ + + ; + ] αβγγβ [3 2.4.3.4] IH27 [ + + + + + ; + ] αβγβγ IH28 [ + + + + + ; + + + ] αββγγ IH29 [ + + ; + + ] αββββ Tl.4: Isohrl typs IH21 - IH29 with g trnsitivity lsss For xmpl, if T is of spis typ 3 3.4 2, suppos T is typ IH22. Th first tsk is to trmin th llings of P with + + + + + tht r omptil with th inin symol for IH22. For xmpl, in Figur.11, pntgon in tiling of topologil typ [3 3.4 2 ] hs n ssign lling onsistnt with isohrl typ IH22. 30

3 3 3 4 4 Figur.11: omptil lling of pntgon of typ IH22 (symol [ + + + + + ; + + ]). It is sily hk tht th only lling omptil with this symol pls th twn th two 4-vlnt vrtis. Nxt, lls,,,, n r ssign to th ornr ngls of P n lls,,,, n r ssign to th sis s in Figur.12. Figur.12: pntgon of typ IH22 with ll ngls. Th si lngth lls orrspon to th inin lls in this s. With this lling, th rquir rltionships mong th ngls n th 31

sis my r off, yiling + + = 2π + = π = = In prtiulr, us two onsutiv ngls of P must supplmntry, w s tht if P mits n isohrl tiling of typ IH22, thn P must Typ 1 pntgon. In similr mnnr, it n trmin tht th only omptil lling for IH23-IH26 pls th twn th two 4-vlnt vrtis s wll. This in turn fors, + = π for ny pntgon mitting isohrl tilings of typs IH23-IH26, n so ny suh pntgon is of Typ 1. If P mits tilings of isohrl typs IH27, IH28, or IH29 th only omptil lling rquirs tht pl twn th two 3-vlnt vrtis. This fors uniqu lling for pntgons of ths isohrl typs, s in Figur.13. From ths uniqu llings, th qutions orrsponing to pntgons of typs IH27, IH28, n IH29 r trmin (Tl.5), from whih w s it is sn tht ny pntgon mitting typs IH27, IH28, or IH29 r pntgons of Typs 2, 4, or 4 (rsptivly). IH27 IH28 IH29 Figur.13: IH27, IH28, n IH29 pntgons with n = 5. 32

IH27 IH28 IH29 + = π = = π/2 = π/2 = = 2 + = π = = = Tl.5: ngl/si qutions for pntgons with n = 5 of typs IH27, IH28, n IH29 IH21 is th only isohrl typ for topologil typ [3 4.6]. Thr r only two vil llings of n IH21 pntgon orrsponing to th inin symol for IH21 in Tl.4. Ths llings r sn in Figur.14, n th rquir qutions rlting ngls n sis r givn in Tl.6. oth IH21 pntgons with n = 5 must Typ 5 if thy r to til th pln. IH21(1) IH21(2) Figur.14: IH21 pntgons with n = 5. IH21(1) IH21(2) = π/3 = π/3 = 2π/3 = 2π/3 =, = =, = Tl.6: ngl/si qutions for pntgons with n = 5 of typs IH21 Othr llings of IH21 pntgons with n = 5 yil impossil rltionships mong th ngls of th pntgon. For xmpl, in Figur.15, th lling rquirs + + = 2( + + ). 33

Figur.15: n impossil lling of n IH21 pntgon with n = 5. Th rsults for isohrl pntgons with n = 5 r summriz in Tl.7. ppnix.2. n = 6: Pntgons tht mit non-g-to-g til-trnsitiv tilings For i = 1 n n = 6, th only possil topologil typ is [3 6 ]. In this s, h pntgon of T hs xtly on flt not ppring twn two of th ornrs of th pntgon. Mny isohrl typs unr topologil typ [3 6 ] r impossil for suh pntgon. If pntgon P with n = 6 is ll oring to [3 6 ] isohrl typ, onsir n g ll x from th inin symol tht is jnt to this flt no. In isohrl typs IH8- IH11, IH18, n IH20, w s tht h ll must ppr t lst twi in P n in nonjnt lotions. For ths typs, nothr si of P tht is not jnt to th flt no must ll with x. This fors on of th ornrs of P to hv ngl msur π, whih nnot (s Figur.16. In similr mnnr, ll x in th ll tht is jnt to flt no nnot unsign (s Figur.16. This osrvtion in omintion with th prvious osrvtion limints IH12 n IH13. For isohrl typs IH17 n IH19, if in lling P w ttmpt to voi lling inonsistnis, w fin tht th symols jnt to th flt no must of th form x + x or x x +. Howvr, in ths two isohrl typs, th gs jnt to ornr of P woul nssrily ll x + x or x x +, foring tht ornr to flt. 34

π x π x π x π () () Figur.16: Symols tht for flt ornrs in P. ftr liminting thos isohrl typs tht r for P to hv flt ornr, typs IH1-IH7 n IH14-IH16 rmin to hk. ny 6-no pntgon of isohrl typ IH1-IH7 n ll in 6 wys (h lling orrsponing to th hoi of symols surrouning th flt no). nlyzing h possil lling is mttr of routin, n from mong ths 42 llings, 5 typs of pntgons r foun. Typ 1 pntgons Typ 2 pntgons Typ 3 pntgons Oviously impossil pntgons Non-oviously impossil pntgons xmpls of llings ling to ths 5 outoms will prsnt nxt. In Figur.17, w s lling of pntgon P whih fors two jnt ngls of P to supplmntry, n so suh pntgon is of Typ 1. In ny IH2 lling of 6-no pntgon yils Typ 1 pntgon. In Figur.17, 6-no pntgon hs n givn n IH3 lling, n it is quikly trmin suh pntgon is of Typ 2. In Figur.17, 6-no pntgon is ll s n IH7 til. This lling givs Typ 3 pntgon. 35

F f F f f F F f f F () () () Figur.17: [3 6 ] 6-no pntgons of Typs 1, 2,n 3 Most of th IH1-IH7 llings of 6-no pntgons r sily tgoriz into th known 14 typs, ut two kins of llings ris tht nnot rliz y n tul onvx pntgon. W will rfr to suh llings s impossil. Th first impossil lling, whih pprs in only thr of th IH7 llings, is impossil sin thr flt ngls nnot surroun vrtx (s Figur.18). Th son typ of impossil lling is not oviously impossil. This lling pprs in quivlnt forms in ll six IH1 llings n in two of th IH3 llings. onsir th lling of th 6-no pntgon of typ IH1 in Figur.18. This lling implis gomtrilly impossil pntgon: routin lultion rvls tht th istn from th intrior vrtx ll to th intrior vrtx ll must grtr thn +. In, if th g is pl on horizontl with t th origin, thn = ( + + os(π ), sin(π )) n = ( os, sin ). Thn 2 =[ + + os(π ) os )] 2 + [ sin(π ) sin ] 2 =( + ) 2 + 2( + )[os(π ) os ] + 2 [os(π ) os ] 2 + 2 [sin(π ) sin ] 2 ( + ) 2 + 2( + )[os(π ) os ] >( + ) 2 Sin + + = 2π n ll intrior ngls of onvx pntgon r lss thn π, thn + > π, so π > > π > 0 n os is rsing on th intrvl [0, π], whih justifis th finl inqulity. 36

F f f () = π F F F f f () F = π Figur.18: Two inonsistnt llings of [3 6 ] 6-no pntgons from typs IH1-IH7 Nxt onsir th IH14-IH16 llings of 6-no pntgons. Ths thr isohrl typs r similr in tht th inin symols rquir, for th sm rsons prviously isuss prtining to lling of gs jnt to th flt no, tht th gs jnt th th flt no must mrk + or +, so thr r only two vil llings for h of ths thr isohrl typs. Th two vil llings for IH14 prou pntgons lik th on of Figur.18, so thr r no possil tilings y 6-no pntgons of isohrl typ IH14. Th two vil IH15 llings r shown in Figur.19, n th rsulting pntgons r of Typ 1. Isohrl typ IH16 yils th two llings of Figur.20. Figur.20 givs Typ 3 pntgon, n Figur.20 is impossil. π π π () π π π () Figur.19: 6-no IH15 pntgons 37

π π π π π π () () Figur.20: 6-no IH16 pntgons i n Vrtx Vlns Topolgil Typ Isohrl Typ Possil Pntgon Typ(s) 1 5 3.3.3.3.6 [3 4.6] IH21 5 3.3.3.4.4 [3 3.4 2 ] IH22 1 [3 3.4 2 ] IH23 1 [3 3.4 2 ] IH24 1 [3 3.4 2 ] IH25 1 [3 3.4 2 ] IH26 1 [3 2.4.3.4] IH27 2 [3 2.4.3.4] IH28 4 [3 2.4.3.4] IH29 4 1 6 3.3.3.3.3.3 [3 6 ] IH1 - [3 6 ] IH2 1 [3 6 ] IH3 2 [3 6 ] IH4 1 [3 6 ] IH5 1 [3 6 ] IH6 1,2 [3 6 ] IH7 3 [3 6 ] IH8-14 - [3 6 ] IH15 1 [3 6 ] IH16 3 [3 6 ] IH17-20 - Tl.7: Typs of Isohrl Pntgons In summry, w s from Tl.7 tht ny pntgon tht mits til trnsitiv tiling of th pln must of th known typs 1-5, onfirming th rsult in [5]. 38