Planetesimal Accretion

Similar documents
Overview of Planetesimal Accretion

Accretion of Planets. Bill Hartmann. Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes

Definitions. Stars: M>0.07M s Burn H. Brown dwarfs: M<0.07M s No Burning. Planets No Burning. Dwarf planets. cosmic composition (H+He)

Planet Formation. XIII Ciclo de Cursos Especiais

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Star & Planet Formation 2017 Lecture 10: Particle growth I From dust to planetesimals. Review paper: Blum & Wurm 2008 ARAA

arxiv: v1 [astro-ph.ep] 23 Mar 2010

arxiv: v2 [astro-ph.sr] 17 May 2010

How migrating geese and falling pens inspire planet formation

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD)

Planetesimal formation by an axisymmetric radial bump of the column density of the gas in a protoplanetary disk

Planet Formation. lecture by Roy van Boekel (MPIA) suggested reading: LECTURE NOTES ON THE FORMATION AND EARLY EVOLUTION OF PLANETARY SYSTEMS

Accretion in the Early Kuiper Belt I. Coagulation and Velocity Evolution

The growth of planetary embryos: orderly, runaway, or oligarchic?

Planetesimal Formation and Planet Coagulation

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI)

How do we model each process of planet formation? How do results depend on the model parameters?

C. Mordasini & G. Bryden. Sagan Summer School 2015

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process?

SIMULTANEOUS FORMATION OF GIANT PLANETS

F. Marzari, Dept. Physics, Padova Univ. Planetary migration

From pebbles to planets

arxiv:astro-ph/ v1 30 Oct 2006

Exoplanets: a dynamic field

The Diverse Origins of Terrestrial-Planet Systems

Formation, Orbital and Internal Evolutions of Young Planetary Systems

Evolution of protoplanetary discs

Ruth Murray-Clay University of California, Santa Barbara

arxiv: v1 [astro-ph] 28 Nov 2008

arxiv:astro-ph/ v1 18 Jan 2007

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Planet formation and (orbital) Evolution

Anders Johansen (Max-Planck-Institut für Astronomie) From Stars to Planets Gainesville, April 2007

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks

Forming habitable planets on the computer

PLANET FORMATION BY COAGULATION: AFocus on Uranus and Neptune

Astronomy. Astrophysics. Oligarchic planetesimal accretion and giant planet formation. A. Fortier 1,2,,O.G.Benvenuto 1,2,, and A.

The role of magnetic fields for planetary formation

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Planetary formation around other stars

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets

arxiv: v1 [astro-ph.ep] 10 Jun 2011

The Fomalhaut Debris Disk

From pebbles to planetesimals and beyond

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration.

Oligarchic growth of giant planets

2 Ford, Rasio, & Yu. 2. Two Planets, Unequal Masses

Lecture 20: Planet formation II. Clues from Exoplanets

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

Lecture 1: Dust evolution

Astronomy. Astrophysics. Can dust coagulation trigger streaming instability? J. Drążkowska and C. P. Dullemond. 1. Introduction

Astronomy 405 Solar System and ISM

Formation of Planets around M & L dwarfs

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

Astronomy 405 Solar System and ISM

arxiv: v1 [astro-ph.ep] 8 Apr 2010

The dynamical evolution of transiting planetary systems including a realistic collision prescription

Origins of Gas Giant Planets

Astronomy Wed. Oct. 6

Disc-Planet Interactions during Planet Formation

Practical Numerical Training UKNum

Solar System evolution and the diversity of planetary systems

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge

arxiv: v1 [astro-ph.ep] 28 Mar 2019

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

arxiv:astro-ph/ v1 10 Oct 2005

Particles in the Solar Nebula: Dust Evolution and Planetesimal Formation. S. J. Weidenschilling Planetary Science Institute

On the formation of the Martian moons from a circum-mars accretion disk

Accretion of Uranus and Neptune

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Origin of high orbital eccentricity and inclination of asteroids

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

TERRESTRIAL PLANET FORMATION IN THE CENTAURI SYSTEM Elisa V. Quintana. Jack J. Lissauer and John E. Chambers. and Martin J. Duncan

Planetary Embryos Never Formed in the Kuiper Belt

Forming terrestrial planets & impacts

Practical Numerical Training UKNum

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

while the Planck mean opacity is defined by

Chapter 7 The Emerging Paradigm of Pebble Accretion

On a time-symmetric Hermite integrator for planetary N-body simulation

INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS

COLLISIONAL CASCADES IN PLANETESIMAL DISKS. I. STELLAR FLYBYS Scott J. Kenyon. and Benjamin C. Bromley

Growth of terrestrial planets

The Formation of the Solar System

Numerical Simulations of Giant Planetary Core Formation

Chapter 19 The Origin of the Solar System

The Earth-Moon system. Origin of the Moon. Mark Wyatt

Class 15 Formation of the Solar System

arxiv:astro-ph/ v1 5 Dec 2001

Orbital Structure and Dynamical Evolution of. TNOs. Patryk Sofia Lykawka ( )

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Giant Planet Formation

7.2 Circumstellar disks

The Formation of Habitable Planetary Systems. Dániel Apai Space Telescope Science Institute

The formation of Uranus and Neptune among Jupiter and Saturn

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Initial Conditions: The temperature varies with distance from the protosun.

PLANETARY MIGRATION. Review presented at the Protostars & Planets VI conference in Heidelberg, september 2013 (updated).

Lecture 38. The Jovian Planets; Kuiper Belt. Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's

Transcription:

Planetesimal Accretion Chris W. Ormel Max-Planck-Institute for Astronomy, Heidelberg and Kees Dullemond, Marco Spaans MPIA + U. of Heidelberg U. of Groningen Chris Ormel: planetesimal accretion Bern 26.05.2010 1/46

Contents 1. Introduction 2. Monte Carlo model for collisions 3. Planetesimal growth simulations 4. Transition between runaway growth & oligarchy Chris Ormel: planetesimal accretion Bern 26.05.2010 2/46

Contents 1.Introduction Planet formation stages Gravitational focusing Runaway growth & oligarchic growth 2.Monte Carlo model for collisional evolution 3.Planetesimal growth simulations 4.Application: transition to Oligarchy Chris Ormel: planetesimal accretion Bern 26.05.2010 3/46

Planet formation Chris Ormel: planetesimal accretion Bern 26.05.2010 4/46 [Michiel Hogerheijde]

Planetary distance ladder μm mm m km 103 km ISM-dust ISM-dust Chondrules Chondrules Boulders Boulders Planetesimals Planetesimals (proto) (proto) Planets Planets 1 1?? 2 3 bind matter timescales observations Growth mechanisms: 1. Surface forces 2. Gravity 3. Particle concentration + collapse (GI) Chris Ormel: planetesimal accretion Bern 26.05.2010 5/46

1. Dust to planetesimals Chondrule formation, planetesimal formation Sticking by surface forces [Blum & Wurm 2008] Relative velocity: gas drag Meter size barrier (Particle) Instabilities [Johansen et al. 2007, 2009; Cuzzi et al. 2010] Chris Ormel: planetesimal accretion Bern 26.05.2010 6/46

Velocities 1mm 1cm 1m radial drift 10 m/s Sound speed cg~105 cm/s Turbulence strength α~10-4 Pressure parameter η ~ 10-3 1 cm/s [Weidenschilling 1977; Ormel & Cuzzi 2007] Chris Ormel: planetesimal accretion Bern 26.05.2010 7/46 Stokes number

2. From planetesimals to protoplanets Sticking mechanism: gravity Velocity: mutual grav. stirring Systematic (Kepl.) & random Runaway growth, oligarchic growth Isolation mass: M iso 10 3 M E 1 g cm 2 3/ 2 3 Chris Ormel: planetesimal accretion Bern 26.05.2010 8/46 R 1 AU

3. Protoplanets Planets Inner solar system: chaotic growth [e.g., Chambers 2001; Raymond 2006] Outer solar system: Build-up of a ~10 ME core + gas accretion Planet synthesis [Mordasini et al. 2009a,b; Ida & Lin 2004, 2008...] Chris Ormel: planetesimal accretion Bern 26.05.2010 9/46

Gravitational focusing Rc o l Rg e o Σ: Surface density planetesimals Ω: orbital frequency vesc : escape velocity of body 2 dm big v = R 2big 1 esc dt v 2a va: approach velocity Chris Ormel: planetesimal accretion Bern 26.05.2010 10/46 Gravitational focusing factor (can be >> 1)

Keplerian shear (low v regime) Relative velocity M 3M c ; v h= R h Minimum approach velocity va~vh va~vh rbit R h=a 1/3 o Circular Hill radius Rh va=vran ~eaω 2 dm big v = R 2big 1 esc dt v 2a Max. GFF ~(vesc/vh)2 ~103 Chris Ormel: planetesimal accretion Bern 26.05.2010 11/46 Ω(a) Ω(a+Rh)

Viscous stirring Total motion Collisionless gravitational encounters: Low random motions Convert potential energy to random E Increases the random motion v (inclination+ eccentricities) Decreases GF Chris Ormel: planetesimal accretion Bern 26.05.2010 12/46 Total motion Large random motions

GF velocity regimes Shear-dominated regime Superescape regime Dispersion-dominated regime Rv s ch a o pr p A, va y t ci o l ve Rc o l Max GF No GF Stirring vran Hill velocity, vh Random velocity, v (mutual eccentricity) Chris Ormel: planetesimal accretion Bern 26.05.2010 13/46 vran Escape velocity, vesc

GF velocity regimes Shear-dominated regime Dispersion-dominated regime Superescape regime Rv s Rc o l vran Growth Hill velocity, vh Random velocity, v (mutual eccentricity) Chris Ormel: planetesimal accretion Bern 26.05.2010 14/46 Growth Escape velocity, vesc

Runaway & oligarchy M T ac = dm / dt Growth timescale 2 dm big v = R 2big 1 esc dt v 2a RG (va = cnst): 2G M big v esc = R big T ac M 1/3 big T1 = T2 :neutral growth Log (mass) T1 = ½ T2:runaway growth Log (mass) Chris Ormel: planetesimal accretion Bern 26.05.2010 15/46

Oligarchy position Dynamically hot (large v), cool (low v) T1 < T2 in same zone: RG T1 > T2 different zones: no RG T2 T2 T1 mass Heating locally slows down growth (viscous stirring) Bodies in same spatial zone separate... neighboring zones converge Chris Ormel: planetesimal accretion Bern 26.05.2010 16/46

Runaway growth/oligarchy Chronologically, we expect: [Ida & Makino 1993; Kokubo Ida 1996,1998, 2000] Runaway growth phase (GF-factor increases), big bodies grow quickly Gradual heating of plts. through viscous-stirring of protoplanets Transition to oligarchy, self-regulated [slow] growth Oligarch heats its own food [Goldreich et al. 2004] 2 component distribution of oligarchs & planetesimals Chris Ormel: planetesimal accretion Bern 26.05.2010 17/46

Contents 1.Introduction 2.Monte Carlo model for collisional evolution Key ingredients Statistical codes Monte Carlo method 3.Planetesimal growth simulations 4.Application: transition to Oligarchy Chris Ormel: planetesimal accretion Bern 26.05.2010 18/46

Collisional evolution codes As function of time, resolve: Masses Random velocities (inclination, eccentricity) Semi-major axis (other properties of bodies) Chris Ormel: planetesimal accretion Bern 26.05.2010 19/46

Approaches N-body Solve e.o.m. for every particle [e.g., Kokubo & Ida 1998 2000; Barnes et al. 2009] Monte Carlo (relaxation) Statistical/Particle in a box Binning approach [e.g., Goldreich et al. 1978; Wetherill & Stewart 1989, Weidenschilling et al. 1997; Inaba et al. 2001] Monte Carlo (probability) [Ormel & Spaans 2008] Hybrid (statistical + N-body) [Bromley & Kenyon 2006; Glaschke et al. 2006] Chris Ormel: planetesimal accretion Bern 26.05.2010 20/46

Binning method Group particles by mass (bins) Continuous view (binning method) number density/unit mass Consider interactions between bins Interactions between mass bins Fast & easy to implement Mass as only independent variable Particle mass Chris Ormel: planetesimal accretion Bern 26.05.2010 21/46

Monte Carlo [OS08] approach I. Use representative bodies (RB) Each RB represents Ng planetesimals Fix: mass, eccentricity, inclination, semi-major axis Randomize: phase angles Calculate the collision probability between each of these RB. Perform (group) collision; update probabilities Chris Ormel: planetesimal accretion Bern 26.05.2010 22/46

Monte Carlo approach II. Semi major axes, a Comp. body: #total (physical) bodies Particle type I: 30 bodies Particle type II: 5 bodies Particle group N Chris Ormel: planetesimal accretion Bern 26.05.2010 23/46 CR = N 1 N 2 R 2col v a 2 h eff Area

Monte Carlo III. Collisions + 1 body of group 1 6 bodies of group 2 1 body of New group Bookkeeping: Update collision rates Number of collision partners Add/remove new RB (=comp. bodies) Dynamically change group size Ng: the number of physical particles a single RB represents Chris Ormel: planetesimal accretion Bern 26.05.2010 24/46

Flexible grouping [Ormel & Spaans 2008] Sketch of particle distribution incipient to RG Mass density Small particles still dominate (require little resolution) Particles in tail will start runaway (resolve individually) High Low grouping resolution mass Low/None High Chris Ormel: planetesimal accretion Bern 26.05.2010 25/46

Contents 1.Introduction 2.Monte Carlo model for collisional evolution 3.Planetesimal growth simulations Movies @1, 6, & 35 AU Low and high Σ 4.Application: transition to Oligarchy Chris Ormel: planetesimal accretion Bern 26.05.2010 26/46

Simulation Results Simulation properties Single planetesimal size initially (e.g. r=8km) Local (1 disk radius) Multi-zone Until 2000km Viscous stirring, dynamical friction, gas drag, (fragmentation), etc. NO: spatial scattering (close encounters) Chris Ormel: planetesimal accretion Bern 26.05.2010 27/46

1 AU simulation (w/o fragm.) Indicated are: Radius plant. (X) Position plant. (Y) Group total mass: Area dot~m1/3tot; mtot = Ng midv Grav. focusing factor w.r.t. biggest particle (v/vh, color) Single body Hill radius Chris Ormel: planetesimal accretion Bern 26.05.2010 28/46 vh: Hill velocity of biggest body, vh~r1

Chris Ormel: planetesimal accretion Bern 26.05.2010 29/46

1 AU simulation (no fragm.) Σ = 17 g cm-2 Leftover plts. Chris Ormel: planetesimal accretion Bern 26.05.2010 30/46 Oligarchs

Chris Ormel: planetesimal accretion Bern 26.05.2010 31/46

6 AU simulation (w/o fragm.) Chris Ormel: planetesimal accretion Bern 26.05.2010 32/46

35 AU run (w/o fragm.) Chris Ormel: planetesimal accretion Bern 26.05.2010 33/46

35 AU w/o fragm. Chris Ormel: planetesimal accretion Bern 26.05.2010 34/46

35 AU high density + fragmt. High Σ Chris Ormel: planetesimal accretion Bern 26.05.2010 35/46 Low Σ

35 AU: different Σ Chris Ormel: planetesimal accretion Bern 26.05.2010 36/46

End states Chris Ormel: planetesimal accretion Bern 26.05.2010 37/46

Contents 1.Introduction 2.Monte Carlo model for collisional evolution 3.Planetesimal growth simulations 4.Application: transition to Oligarchy [Ormel et al. 2009] Runaway growth & oligarchy phase Runaway growth timescale, Trg New criterion for transition size, Rtr Chris Ormel: planetesimal accretion Bern 26.05.2010 38/46

Size distribution 1 AU Chris Ormel: planetesimal accretion Bern 26.05.2010 39/46

Key statistics Runaway growth Oligarchy Gra (inve vita rse tio ) nal FF RG-timescale, Trg Radius of biggest body (evolutionary parameter) Chris Ormel: planetesimal accretion Bern 26.05.2010 40/46

Transition RG/Oligarchy? 1.Runaway growth increasing GF 2.Oligarchy decreasing GF 3.RG proceeds exponentially: T rg =K rg R0 s 5 a v T vs = 9R h log v h [Ida & Makino 1993; Ormel et al. 2010] We find initially Tr g < Tv s :RG out-paces the stirring! Chris Ormel: planetesimal accretion Bern 26.05.2010 41/46

Transition RG/Oligarchy II. Ida & Makino (1993) transition: 2 M =m 2 component model M,Σ: mass, surface density in big bodies m,σ: mass, surface density of small bodies Comparison of stirring power among populations (Our) equate timescales: T rg =T vs-2c =T ac-2c The point where the 2comp approximation becomes first valid Chris Ormel: planetesimal accretion Bern 26.05.2010 42/46

Transition RG/Oligarchy III. Ida & Makino (1993) criterion: R tr 90 km 10 g cm 2 1/5 a 1 AU 2 /5 R0 10 km 3/5 New criterion: [Ormel et al. 2010] R tr 320 km 10 g cm 2 Chris Ormel: planetesimal accretion Bern 26.05.2010 43/46 2/ 7 a 1 AU 5/7 R0 10 km 3/7

Chris Ormel: planetesimal accretion Bern 26.05.2010 44/46

Transition RG/Oligarchy New criterion provides conditions at transition: Conditions for core accretion phase Radii oligarchs, timescales, size distr. Planetesimals Speculate Kuiper Belt' size distribution fossil of RG phase Chris Ormel: planetesimal accretion Bern 26.05.2010 45/46 Diameter [km] Fraser & Kavelaars (2009)

Summary Investigated growth ~km ~103 km Introduced novel MC model Identified the runaway growth & oligarchy stages Set a new criterion for the transition size Chris Ormel: planetesimal accretion Bern 26.05.2010 46/46