Molecular Dynamics. Park City June 2005 Tully

Similar documents
IV. Classical Molecular Dynamics

Mixed quantum-classical dynamics. Maurizio Persico. Università di Pisa Dipartimento di Chimica e Chimica Industriale

Conical Intersections. Spiridoula Matsika

Ab initio Molecular Dynamics Born Oppenheimer and beyond

Ab initio molecular dynamics: Basic Theory and Advanced Met

Ab initio molecular dynamics and nuclear quantum effects

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

Detailed Balance in Ehrenfest Mixed Quantum-Classical Dynamics

Nonadiabatic Molecular Dynamics with Kohn-Sham DFT: Modeling Nanoscale Materials. Oleg Prezhdo

SUPPLEMENTARY INFORMATION

Ab initio molecular dynamics

Quantum Molecular Dynamics Basics

Born-Oppenheimer Approximation

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Models for Time-Dependent Phenomena

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

High Energy D 2 Bond from Feynman s Integral Wave Equation

CHEM3023: Spins, Atoms and Molecules

Theoretical Photochemistry SoSe 2014

Mixed quantum-classical treatment of reactions at surfaces with electronic transitions

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Charge and Energy Transfer Dynamits in Molecular Systems

Ayan Chattopadhyay Mainak Mustafi 3 rd yr Undergraduates Integrated MSc Chemistry IIT Kharagpur

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014

Sharon Hammes-Schiffer a) Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556

Chapter 10. Non-Born Oppenheimer Molecular Dynamics for Conical Intersections, Avoided Crossings, and Weak Interactions

Energy and Forces in DFT

Wavepacket Correlation Function Approach for Nonadiabatic Reactions: Quasi-Jahn-Teller Model

Molecular dynamics with quantum transitions for proton transfer: Quantum treatment of hydrogen and donor acceptor motions

How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases

How to make the Born-Oppenheimer approximation exact: A fresh look at potential energy surfaces and Berry phases

Electronic Structure Methods for molecular excited states

AN ACCELERATED SURFACE-HOPPING METHOD FOR COMPUTATIONAL SEMICLASSICAL MOLECULAR DYNAMICS. Laren K. Mortensen

Supporting Information. I. A refined two-state diabatic potential matrix

List of Comprehensive Exams Topics

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 8 22 FEBRUARY 2004

A. Time dependence from separation of timescales

Submitted to The Journal of Physical Chemistry

23 The Born-Oppenheimer approximation, the Many Electron Hamiltonian and the molecular Schrödinger Equation M I

Project: Vibration of Diatomic Molecules

Theoretical Photochemistry WiSe 2016/17

QUANTUM AND THERMAL MOTION IN MOLECULES FROM FIRST-PRINCIPLES

Transition probabilities and couplings

Theoretical Photochemistry WiSe 2017/18

5.74 Introductory Quantum Mechanics II

What s the correct classical force on the nuclei

Michael J. Bedard-Hearn, Ross E. Larsen, Benjamin J. Schwartz*

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Eulerian semiclassical computational methods in quantum dynamics. Shi Jin Department of Mathematics University of Wisconsin-Madison

Resonant enhanced electron impact dissociation of molecules

Ab initio molecular dynamics : BO

Dissipative nuclear dynamics

Marcus Theory for Electron Transfer a short introduction

Quantum Master Equations for the Electron Transfer Problem

Modifications of the Robert- Bonamy Formalism and Further Refinement Challenges

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD

Density Functional Theory: from theory to Applications

Ab Ini'o Molecular Dynamics (MD) Simula?ons

J07M.1 - Ball on a Turntable

Temperature and Pressure Controls

Introduction to Geometry Optimization. Computational Chemistry lab 2009

Non-adiabatic dynamics with external laser fields

Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene

Adiabatic Approximation

Appendix 1: Atomic Units

Quantum Physics II (8.05) Fall 2002 Outline

Many important phenomena in physics, chemistry, biology,

Major Concepts Langevin Equation

Multi-Electronic-State Molecular Dynamics: A Wave Function Approach with Applications

PolyCEID: towards a better description of non-adiabatic molecular processes by Correlated Electron-Ion Dynamics

Principles of Molecular Spectroscopy

Electron-Proton Correlation, Theory, and Tunneling Splittings. Sharon Hammes-Schiffer Penn State University

Physical Dynamics (SPA5304) Lecture Plan 2018

TRANSITION STATE WAVE PACKET STUDY OF QUANTUM MOLECULAR DYNAMICS IN COMPLEX SYSTEMS ZHANG LILING. (B.Sc.)

Car-Parrinello Molecular Dynamics

12.2 MARCUS THEORY 1 (12.22)

Theory vs molecular modelling of charge transfer reactions: some problems and challenges

5.74 Introductory Quantum Mechanics II

Time reversible Born Oppenheimer molecular dynamics

QUANTUM MECHANICAL METHODS FOR ENZYME KINETICS

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

Exp. 4. Quantum Chemical calculation: The potential energy curves and the orbitals of H2 +

Pure and zero-point vibrational corrections to molecular properties

Decoherence in molecular magnets: Fe 8 and Mn 12

Semiclassical Electron Transport

S.K. Saikin May 22, Lecture 13

Molecular propagation through crossings and avoided crossings of electron energy levels

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2

Vibrational and Rotational Analysis of Hydrogen Halides

Laser Induced Control of Condensed Phase Electron Transfer

Simulating charge transfer in (organic) solar cells

When are electrons fast and are Born and Oppenheimer correct?

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Model for vibrational motion of a diatomic molecule. To solve the Schrödinger Eq. for molecules, make the Born- Oppenheimer Approximation:

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

Transcription:

Molecular Dynamics

John Lance Natasa Vinod Xiaosong Dufie Priya Sharani Hongzhi Group: August, 2004

Prelude: Classical Mechanics Newton s equations: F = ma = mq = p Force is the gradient of the potential: F = Vq ( ) q mq = p = V ( q) q Newton s Equations

Prelude: Classical Mechanics Hamilton s equations: Define total energy = Hamiltonian, H: q = H ( p, q) p p = H ( q, p) q Hamilton s Equations if H 2 ( pq, ) = T ( p) + Vq ( ) = p /2 m+ Vq ( ) q = p/ m p = V( q) q

Prelude: Classical Mechanics Lagrangian Mechanics: Define Lagrangian L: L( qq, ) = T ( q ) Vq ( ) d L L = dt q q Euler-Lagrange Equations if L( qq, ) = T ( q ) Vq ( ) = mq Vq ( ) 1 2 2 mq = p = V ( q) q

Prelude: Classical Mechanics Hamilton-Jacobi Equation: Define Hamilton s Principle Function S: S = pdq = classical action integral S t = -H q, S q Hamilton-Jacobi Equations S S Vq ( ) + H q, = p + = 0 q t q q

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

I. The Potential Energy Surface Objective: i Ψ = Ψ t ( rr,, t) H ( rr, ) ( rr,, t) r = electrons R = nuclei H = + = + 2M 2m 2M α 2 2 2 2 2 2 R r V α Rα el α i e α α ( rr, ) H ( rr ; ) H ( rr ; ) Φ ( rr ; ) = E ( R) Φ ( rr ; ) el j j j Adiabatic (Born-Oppenheimer) Potential Energy Surface

I. The Potential Energy Surface Born-Oppenheimer Approximation: ( rr,, t) ( rr ; ) ( R, t) Ψ Φ Ω j * Substitute into TDSE, multiply from left by Φ rr ;, integrate over r: i Ω j t = <Φ j el Φ j >Ω j t t ( R, ) ( r, R) H ( r, R) ( R, ) 2 2 <Φ j(, rr) R Φ j(, rr) Ω j( R) > α α 2M α j j ( ) = E Ω <Φ Φ > 2 2 j( R) j( R, t) [ j( rr, ) j( rr, ) R α 2Mα + <Φ Φ > + <Φ Φ > Ω 2 2 j( rr, ) R j( rr, ) R j( rr, ) R j( rr, ) j( R, t) α α α α ]

I. The Potential Energy Surface Born-Oppenheimer Approximation: 2 Ω 2 j ( R, ) = E j( R) Ω j( R, ) [ <Φ j( r, R) Φ j( r, R) > R t α 2Mα i t t 2 2 j( rr, ) R j( rr, ) R j( rr, ) R j( rr, ) j( R, t) + <Φ Φ > + <Φ Φ > Ω α α α ] α <Φ (, rr) Φ (, rr) > = (1) = 0 R j j R α = <Φ (, rr) Φ (, rr) >+< Φ (, rr) Φ (, rr) > j R j R j j α α α i R, t ( R) R, t ( R) 2 Ω 2 j( ) = E j Ω j( ) Rα Ω j t α 2Mα 2 j(, rr) R j(, rr) j( R,) t +<Φ Φ >Ω α???

I. The Potential Energy Surface Born-Oppenheimer Approximation: i t t 2 Ω j = Rα Ω j + j Ω j t α 2Mα 2 ( R, ) ( R) E ( R) ( R, ) where E ( R) = <Φ ( r, R) H Φ ( r, R) > j j el j

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

II. Classical Limit via Bohm Eqs. 2 i Ω j t = R j j t α t + Ω α 2M α ( R 2, ) E ( R ) ( R, ) i Ω j( R, t) = Aj( R, t) exp[ Sj( R, t)] Substitute (2) into (1) and separate real and imaginary parts: (1) (2) i S 2 2 1 [ ] 2 R A α = S E ( R) α 2M 2M A j R j j α α α α j j (3) i 1 A = A S A S 2 { 2 2[ ] i[ ] } j R j R j j R j α M α α α α (4)

II. Classical Limit via Bohm Eqs. Compare Eq. (3) with Hamilton-Jacobi Equation: S t = -H q, S q where S q = p i S 2 2 1 [ ] 2 R A α = S E ( R) α 2M 2M A j R j j α α α the quantum potential α j j (3) 0: i S 1 [ ] 2 = S α 2M E j R j j α α ( R)

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

III. Adiabatic on-the-fly Dynamics The Hellman Feynman Theorem: d E dr d ( R) = Φ ( R) H ( R) Φ ( R) dr j j el j subject to Φ ( R) Φ ( R) = 1 j j and H ( R) Φ ( R) = E ( R) Φ ( R) el j j j d E dr dh el ( R) ( R) = Φ ( R) Φ ( R) dr j j j d d + Φ j( R) H el( R) Φ j( R) + Φ j( R) H el( R) Φ j( R) dr dr

III. Adiabatic on-the-fly Dynamics The Hellman Feynman Theorem: d E dr dh el ( R) ( R) = Φ ( R) Φ ( R) dr j j j d d + Φ j( R) H el( R) Φ j( R) + Φ j( R) H el( R) Φ j( R) dr dr d E dr dh el ( R) ( R) = Φ ( R) Φ ( R) dr j j j d d + E j( R) Φ j( R) Φ j( R) + Φ j( R) Φ j( R) dr dr d = j( R) j( R) 0 dr Φ Φ =

III. Adiabatic on-the-fly Dynamics QM/MM Approach: empirical force field ab initio Brownian dynamics dielectric continuum generalized Langevin

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

IV. Car-Parrinello Dynamics Euler-Lagrange equations: ddl dt dq L = q Classical Lagrangian: L T V 1 M R 2 E ( R) Car-Parrinello Lagrangian: L = = α 2 α j M R = E ( R)/ R 1 2 α α j α = M R <Ψ H Ψ > 1 2 2 α j el j + µ < ϕ ϕ >+ λ [ < ϕ ϕ > δ ] n M R = <Ψ H Ψ > / R α α j el j α α n n n nm n m nm nm µ ϕ = δ <Ψ H Ψ > / δϕ + λ ϕ * n n j el j n nm m m

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

V. Beyond Born-Oppenheimer

V. Beyond Born-Oppenheimer ( rr, ) ( rr ; ) ( R) ( rr, ) ( rr ; ) ( R) Ψ Φ Ω Ψ = Φ Ω j j i i i ( ) Substitute into TISE, multiply from left by Φ j rr ;, integrate over r: 2 1 2 Mα R Ω j( R) + E j( R) Ω j( R) E Ω j( R) = α 2 α 2 2 Dji( R) Ω i ( R) + d ji( R) R Ωi ( R) α 2 i i j * where nonadiabatic (derivative) couplings are defined by: { } 1 * ( ) = M Φ (, ) Φ (, ) d R rr rr dr ij α i Rα j α { } 1 * 2 ( ) = Φ (, ) Φ (, ) D R M r R r R dr ij α i Rα j α

V. Beyond Born-Oppenheimer Potential Energy Curves for the Oxygen Molecule from R. P. Saxon and B. Liu, J. Chem. Phys. 1977 energy (ev) 15 10 5 0 1 2 3 internuclear distance (A)

V. Beyond Born-Oppenheimer Nonadiabatic Transitions at Metal Surfaces: Electron-Hole Pairs E vac conduction band E F Metal

V. Beyond Born-Oppenheimer Vibrational Lifetime of CO on Cu(100) v = 1 v = 0 Molecular Dynamics: t ~ 10-3 s. Experiment (A. Harris et al.): t = 2.5 ps.

V. Beyond Born-Oppenheimer H 22 (ionic) H 11 (neutral) off-diagonal coupling: H 12

V. Beyond Born-Oppenheimer H ( R) H ( R) H ( R) 11 12 = H12( R) H22( R) E(R) H 11 (R) H 22 (R) The Non-Crossing Rule diabatic potential energy curves H 12 (R) R E ± H ( R) + H ( R) 1 [ 11 ( ) 22 ( )] 4[ 12 ( )] 2 2 11 22 2 2 ( R) = ± H R H R + H R

V. Beyond Born-Oppenheimer H ( R) H ( R) H ( R) 11 12 = H12( R) H22( R) The Non-Crossing Rule E(R) 2H 12 diabatic potential energy curves R adiabatic potential energy curves E ± H ( R) + H ( R) 1 [ 11 ( ) 22 ( )] 4[ 12 ( )] 2 2 11 22 2 2 ( R) = ± H R H R + H R

V. Beyond Born-Oppenheimer The non-crossing rule for more than 1 degree of freedom: Conical Intersection N degrees of freedom: N-2 dimensional seam E ± H ( R, R ) + H ( R, R ) 1 [ (, ) (, ) 2 2 11 1 2 22 1 2 2 2 ( R, R ) = ± H R R H R R ] + 4[ H ( R, R )] 1 2 11 1 2 22 1 2 12 1 2

V. Beyond Born-Oppenheimer Thanks to Rick Heller

V. Beyond Born-Oppenheimer? The Massey Criterion: E(R) 2H 12? E t E t 2 H 12 distance/velocity R 2 H / ( H H )/ R / R 12 11 22 2 H / ( H H )/ R 12 11 22 R ( H H )/ R 11 22 2 4H12 << 1 adiabatic

V. Beyond Born-Oppenheimer? Landau-Zener Approximation E(R) R? Assumptions: 1. H 11 and H 22 linear 2. H 12 constant 3. Velocity constant P nonad 2 2π H 12 exp R ( H11 H22)/ R

V. Beyond Born-Oppenheimer Classical motion induces electronic transitions Quantum state determines classical forces Quantum Classical Feedback: Self-Consistency

V. Beyond Born-Oppenheimer TWO GENERAL MIXED QUANTUM-CLASSICAL APPROACHES FOR INCLUDING FEEDBACK V b V b V a V a Ehrenfest (SCF) Surface-Hopping

V. Beyond Born-Oppenheimer Ψ(,) rt i = H elψ(,) r t R(t) t Ψ (,) rt = c() t Φ (; rr) i i i (adiabatic states). i dc dt = V c R <Φ (; r R) Φ (; r R) > c j jj j j R i i i

V. Beyond Born-Oppenheimer Ψ(,) rt i = H elψ(,) r t R(t) t Classical path must respond self-consistently to quantum transitions: quantum back-reaction Ehrenfest and Surface Hopping differ only in how classical path is defined

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

VI. Ehrenfest Dynamics i Ψ = Ψ t ( rr,, t) H ( rr, ) ( rr,, t) (1) Self-consistent Field Approximation (fully quantum): t i Ψ ( rr,, t) = Ξ( r, t) Ω( R, t) exp Er ( t ') dt' ( ) Substituting (2) into (1), multiplying on the left by Ω R,t and integrating over R gives the SCF equation for the electronic wave function Ξ r,t : ( r, t) 2 Ξ 2 i = i Ξ t + VrR Ξ t t 2m e i ( ) ( r, ) ( r, R) ( r, ) (2) (3) rr * (, ) = Ω (, ) (, ) Ω(, ) V rr Rt V rr Rt dr where (4) rr

VI. Ehrenfest Dynamics ( ) Substituting (2) into (1), multiplying on the left by Ξ r,t and integrating over r gives the equivalent SCF equation for the nuclear wave function Ω R,t : ( R, t) 2 Ω 1 2 i = Mα R Ω t α t 2 ( R, ) ( r, t) H ( r, R) ( r, t) dr ( R, t) * + Ξ el Ξ Ω The classical (Ehrenfest) limit requires 2 steps: ( ) 1. Replace Ω R,t with a delta function in Eq. (4) α ( ) 2. Take the classical limit of Eq. (5) (eg. using the Bohm formulation as above). Thus, the potential energy function governing the nuclei becomes * Ξ ( r, t) H el ( r, R) Ξ( r, t) dr instead of the adiabatic energy E j (R). (5)

VI. Ehrenfest Dynamics Ψ(,) rt i = H elψ(,) r t R(t) t.. M Rt () = <Ψ() t H Ψ () t > R el V b V a

VI. Ehrenfest Dynamics.. M Rt () = <Ψ() t H Ψ () t > R el? Problem: single configuration average path

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

VII. Surface Hopping Ψ(,) rt i = H elψ(,) r t R(t) t V b V a

VII. Surface Hopping Multi-Configuration Wave Function: Ψ (, rr,) t = Φ (, rr) Ω ( R,) t j Substitute into Schrodinger Eq and take classical limit: j j Surface Hopping However, a rigorous classical limit has not been achieved!

VII. Surface Hopping One Approach: Multi-Configuration Bohm Equations: Ψ (, rr,) t = Φ (, rr) Ω ( R,) t j Ω (,) (,)exp i j R t = Aj R t S j( R,) t j 2 2 1 ( ) 2 R S j = RSj E j ( R ) 2M 2M Aj j A j small h 1 2 j = ( ) ( ) 2 M R j j R S S E motion on potential energy surface j

VII. Surface Hopping 1 2 An = RAniR An RSn 2M m i Am <Φn RΦ m > ir exp ( Sm Sn) Surface Hopping: Evaluate all quantities along a single path Sum over many stochastic paths

VII. Surface Hopping Multi-Configuration Theory: Surface Hopping Ψ() t i = H elψ() t R(t) t 1].. MRt () = R Ek, i.e., motion on single p.e.s. 2] Stochastic hops between states so that probability = c k 2 3] Apply instantaneous Pechukas Force to conserve energy 4] Fewest Switches : achieve [2] with fewest possible hops:

VII. Surface Hopping c 2 2 = 0.8 c 2 2 = 0.7 8? 7 2 3 t k t k+1 Stochastic Fewest Switches algorithm (2-state):

VII. Surface Hopping c 2 2 = 0.8 c 2 2 = 0.7 8 7 2 3 t k t k+1 Stochastic Fewest Switches algorithm (2-state):

VII. Surface Hopping c 2 2 = 0.8 c 2 2 = 0.7 8 7 2 3 t k t k+1 Stochastic Fewest Switches algorithm (2-state): 2 2 c2( k) c2( k+ 1), c ( k) > c ( k+ 1) 2 P2 1 = c2( k) 0, c ( k) c ( k+ 1) 2 2 2 2 2 2 2 2

VII. Surface Hopping

VII. Surface Hopping 0.8 0.7 Probability of upper state 0.6 0.5 0.4 0.3 0.2 Surface Hopping Exact QM 0.1 0 5 10 15 20 25 30 momentum (a.u.)

VII. Surface Hopping

VII. Surface Hopping 1.0 Probability of upper state 0.8 0.6 0.4 0.2 0.0 Surface Hopping Exact QM -4-3 -2-1 0 1 log e kinetic energy (a.u.)

VII. Surface Hopping Ψ(,) rt i = H elψ(,) r t R(t) t V b Nancy Makri Path V a Jack Simons Path

VII. Surface Hopping SHORTCOMINGS OF SURFACE HOPPING 1] Trajectories are independent Trajectories should talk to each other quantum wave packet surface hopping Fundamental approximation, but required to make practical

VII. Surface Hopping SHORTCOMINGS OF SURFACE HOPPING 2] Too drastic: hops require sudden change of velocity Consider swarm of trajectories trajectories hop stochastically at different times gradual evolution of flux

VII. Surface Hopping SHORTCOMINGS OF SURFACE HOPPING 3] Trajectories should evolve on some effective potential, not on a single adiabatic potential energy surface Consider swarm of trajectories trajectories hop stochastically at different times: t 1 t 2 sources and sinks

VII. Surface Hopping SHORTCOMINGS OF SURFACE HOPPING 4] Not invariant to representation adiabatic representation diabatic representation The natural representation for surface hopping is adiabatic

VII. Surface Hopping SHORTCOMINGS OF SURFACE HOPPING 5] Quantum Mechanical Coherence Neglected uses probabilities, not amplitudes FALSE Ψ () t = c () t ϕ ( R) i i i i. dc dt = V c R < ϕ ϕ > c j jj j j R i i i Exact QM ----- Surface Hopping

VII. Surface Hopping SHORTCOMINGS OF SURFACE HOPPING 6] Forbidden Hops (or frustrated hops) Hopping algorithm calls for a hop but there is insufficient kinetic energy? E total probability on state k = c k 2

VII. Surface Hopping SHORTCOMINGS OF SURFACE HOPPING 7] Detailed Balance? What are the populations of the quantum states at equilibrium?

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

VIII. Equilibrium in Mixed Quantum-Classical Dynamics Detailed Balance: N 1 P 1 2 = N 2 P 2 1 Equilibrium Long Timescales Multiple Transitions Relaxation Processes hν Infrequent events e.g., nonradiative transition vs. reaction on excited state

VIII. Equilibrium in Mixed Quantum-Classical Dynamics Detailed Balance: N 1 P 1 2 = N 2 P 2 1 Ψ(,) rt i = H elψ(,) r t t R(t). i dc dt = V c R <Φ (; r R) Φ (; r R) > c j jj j j R i i i time reversible P 1 2 = P 2 1 c 1 2 = c 2 2 probabilities of each quantum state are equal: infinite temperature

VIII. Equilibrium in Mixed Quantum-Classical Dynamics In theories in which the reservoir is treated classically and its effects on the system described in terms of random functions instead of noncommuting operators, it follows that W mn = W nm. This is a serious shortcoming of all semiclassical theories of relaxation. K. Blum, Density Matrix Theory and Applications, 2 nd Ed., (Plenum, NY, 1996). However This is not true for either Ehrenfest or Surface Hopping

VIII. Equilibrium in Mixed Quantum-Classical Dynamics Ehrenfest (SCF) ρ( E ) H( E E ) exp( βe ) de QM TOT QM TOT TOT 0 E E ρ( E ) de ρ( E ) de = QM QM QM QM QM QM 0 0 1 exp( β ) E QM = 2 c β 1 exp( β 2 ) 1 exp( β ) = β 1 exp( β ) Boltzmann: E QM = exp( β ) 1+ exp( β ) c 2 2 = exp( β ) 1 + exp( β )

VIII. Equilibrium in Mixed Quantum-Classical Dynamics log e (population) 2-state system E = 34.6 kj/mole 0-2 -4-6 -8-10 Excited State Population vs. Inverse Temperature Boltzmann Ehrenfest kτ - exp(- Ε/kΤ) Ε 1-exp(- Ε/kΤ) 0 0.001 0.002 1/T (K)

VIII. Equilibrium in Mixed Quantum-Classical Dynamics What about surface hopping? V b. i dc dt = V c R <Φ (; r R) Φ (; r R) > c j jj j j R i i i V a time reversible P 1 2 = P 2 1 c 1 2 = c 2 2 probabilities of each quantum state are equal: infinite temperature looks bad

VIII. Equilibrium in Mixed Quantum-Classical Dynamics What about surface hopping? V b. i dc dt = V c R <Φ (; r R) Φ (; r R) > c j jj j j R i i i V a time reversible P 1 2 = P 2 1 c 1 2 = c 2 2 but surface hopping probabilities = c k 2 frustrated hops

VIII. Equilibrium in Mixed Quantum-Classical Dynamics ENERGY 1 2 1 2 ENERGY 1 2 X frustrated hop! More configurations with low energy

VIII. Equilibrium in Mixed Quantum-Classical Dynamics V b E tot??? frustrated hop V a P 1 2 = exp( - E / kt ) P 2 1 T quantum correct

VIII. Equilibrium in Mixed Quantum-Classical Dynamics P hop = - c k 2 / c k 2 = fractional decrease of state k population = 2 Re[ c c ]/ c.. * 2 k k k i dc dt = V c R <Φ (; r R) Φ (; r R) > c j jj j j R i i i Adiabatic representation Phop v N P v ρ( v ) dv v exp( mv / kt) dv 1 2 1 2 1 1 1 1 2 1 1 exp( E / kt) 1 N 2 1 P1 2 = N 2 P2 1 = exp[ ( E2 E1) / kt] N 1

VIII. Equilibrium in Mixed Quantum-Classical Dynamics 2-State System E = 34.6 kj/mole log e (population) 0-2 -4-6 -8 Excited State Population vs. Inverse Temperature Boltzmann kτ - exp(- Ε/kΤ) Ε 1-exp(- Ε/kΤ) Ehrenfest Surface Hopping -10 0 0.001 0.002 1/T (K)

VIII. Equilibrium in Mixed Quantum-Classical Dynamics Many Quantum States [classical bath] --- C --- C --- C --- C --- C --- C --- C --- C --- H Random force and friction (5000 o K) classical (Morse) quantum (Morse) Ehrenfest (SCF) Surface Hopping V=0 Priya Parandekar V=1 V=2 V=3

Molecular Dynamics I. The Potential Energy Surface II. The Classical Limit via the Bohm Equations III. Adiabatic on-the-fly Dynamics IV. Car-Parrinello Dynamics V. Beyond Born Oppenheimer VI. Ehrenfest Dynamics VII. Surface Hopping VIII. Equilibrium in Mixed Quantum-Classical Dynamics IX. Mixed Quantum-Classical Nuclear Motion

XI. Mixed Quantum-Classical Nuclear Motion Tenets of Conventional Molecular Dynamics 1. The Born-Oppenheimer Multiple Electronic Approximation States, Metals, 2. Classical Mechanical Nuclear Motion Zero Point Motion, Quantized Energy Levels, Tunneling

XI. Mixed Quantum-Classical Nuclear Motion Quantum Effects: Zero-Point Energy Quantized Energy Levels Tunneling

XI. Mixed Quantum-Classical Nuclear Motion Ultimate Solution: Treat All Electrons and Nuclei by Quantum Mechanics Problem: Scaling with Size is Prohibitive

XI. Mixed Quantum-Classical Nuclear Motion AN ALTERNATIVE STRATEGY: MIXED QUANTUM CLASSICAL DYNAMICS quantum dynamics classical dynamics

XI. Mixed Quantum-Classical Nuclear Motion AN ALTERNATIVE STRATEGY: MIXED QUANTUM CLASSICAL DYNAMICS Treat crucial electronic or nuclear degrees of freedom by quantum mechanics, and the remaining nuclei by classical mechanics. self-consistency quantum back-reaction on classical particles

XI. Mixed Quantum-Classical Nuclear Motion PROTON TRANSFER IN SOLUTION covalent reactant: self consistency! ionic product:

XI. Mixed Quantum-Classical Nuclear Motion ADIABATIC vs. NON-ADIABATIC

XI. Mixed Quantum-Classical Nuclear Motion ADIABATIC vs. NON-ADIABATIC

XI. Mixed Quantum-Classical Nuclear Motion R AB A----H----B r

XI. Mixed Quantum-Classical Nuclear Motion Proton and Hydride Transfer in Enzymes: Sharon Hammes-Schiffer Penn State University liver alcohol dehydrogenase (LADH)

XI. Mixed Quantum-Classical Nuclear Motion liver alcohol dehydrogenase Sharon Hammes-Schiffer