Unit 3: Transistor at Low Frequencies

Similar documents
Part II Lectures 8-14 Bipolar Junction Transistors (BJTs) and Circuits

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

T-model: - + v o. v i. i o. v e. R i

Ch. 9 Common Emitter Amplifier

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Lecture 2 Feedback Amplifier

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Design of Analog Integrated Circuits

Basic Interconnects at High Frequencies (Part 1)

Analysis and Design of Basic Interconnects (Part 1)

55:041 Electronic Circuits

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

Lecture 20. Transmission Lines: The Basics

Lecture 23. Multilayer Structures

Chapter 23: Magnetic Field Shielding

(8) Gain Stage and Simple Output Stage

FEEDBACK AMPLIFIERS. β f

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Massachusetts Institute of Technology Introduction to Plasma Physics

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Appendix C Draft. North Area Vulnerability Assessment. Income Level

Transfer Characteristic

Unifying Principle for Active Devices: Charge Control Principle

EECE 301 Signals & Systems Prof. Mark Fowler

Basic Electrical Engineering for Welding [ ] --- Introduction ---

6. Cascode Amplifiers and Cascode Current Mirrors

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

6.012 Electronic Devices and Circuits Formula Sheet for Final Exam, Fall q = 1.6x10 19 Coul III IV V = x10 14 o. = 3.

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

Lecture 27: The 180º Hybrid.

55:041 Electronic Circuits

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

The three major operations done on biological signals using Op-Amp:

EE 221 Practice Problems for the Final Exam

55:041 Electronic Circuits

Feedback Principle :-

User s Guide. Electronic Crossover Network. XM66 Variable Frequency. XM9 24 db/octave. XM16 48 db/octave. XM44 24/48 db/octave. XM26 24 db/octave Tube

Introduction to Electronic circuits.

5- Scattering Stationary States

University of Tripoli / Tripoli - Libya. ** Centre for Solar Energy Research and Studies / Tripoli-Libya

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

Microwave Noise and LNA Design

Ruin Probability in a Generalized Risk Process under Rates of Interest with Homogenous Markov Chain Claims and Homogenous Markov Chain Interests

Chapter 14: Optical Parametric Oscillators

Wp/Lmin. Wn/Lmin 2.5V

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

ANALYSIS OF TRANSISTOR FEEDBACK AMPLIFIERS

EEE2146 Microelectronics Circuit Analysis and Design. MIC2: Investigation of Amplifier Parameters of a Common-Collector Amplifier

PF nce. Conferen. is, FRANC. ectronics Pari. ber 6-10, 2. ustrial Ele. Novemb. EEE Indu

Robust Petri Recurrent-Fuzzy-Neural-Network Sliding-Mode Control for Micro-PMSM Servo Drive System

n gativ b ias to phap s 5 Q mou ntd ac oss a 50 Q co-a xial l, i t whn bias no t back-bia s d, so t hat p ow fl ow wi ll not b p ositiv. Th u s, if si

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below.

Chapter 7 Control Systems Design by the Root Locus Method

Lecture #2 : Impedance matching for narrowband block

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

CIVL 7/ D Boundary Value Problems - Axisymmetric Elements 1/8

Sensors and Actuators Introduction to sensors

N-Channel 20-V (D-S) MOSFET

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Sensors and Actuators Introduction to sensors

Performance Improvement Technique for Induction Motor Driven by a Matrix Converter under Abnormal Input Conditions

:2;$-$(01*%<*=,-./-*=0;"%/;"-*

Week 11: Differential Amplifiers

Lecture 10: Small Signal Device Parameters

Common Gate Amplifier

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

ELCT 503: Semiconductors. Fall 2014

N-Channel 20-V (D-S) MOSFET

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

CDS 101/110: Lecture 7.1 Loop Analysis of Feedback Systems

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals

Extinction Ratio and Power Penalty

ALPHABET. 0Letter Practice

Part III Lectures Field-Effect Transistors (FETs) and Circuits

Energy Storage Elements: Capacitors and Inductors

GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6

1.4 Small-signal models of BJT

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Electromagnetics: The Smith Chart (9-6)

School of Electrical Engineering. Lecture 2: Wire Antennas

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

FEATURES Support multi-language OSD. PM70Support IR remote control. System auto recovery after power reconnected. Support daylight saving function

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

Inflammation and Carotid Artery Risk for Atherosclerosis Study

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

EE C245 ME C218 Introduction to MEMS Design

VI. Transistor Amplifiers

1. Ideal OP Amps. +V cc. R o. v 1 v 2. v o. R d 2 1. V cc. Ideal Characteristics A = (gain is infinite) (no offset voltage) R

Copyright 2004 by Oxford University Press, Inc.

Diodes Waveform shaping Circuits

Transcription:

Unt 3: Tansst at Lw Fquncs JT Tansst Mdlng mdl s an qualnt ccut that psnts th chaactstcs f th tansst. mdl uss ccut lmnts that appxmat th ha f th tansst. Th a tw mdls cmmnly usd n small sgnal analyss f a tansst: mdl Hyd qualnt mdl Th Tansst Mdl JTs a ascally cunt-cntlld dcs; thf th mdl uss a dd and a cunt suc t duplcat th ha f th tansst. On dsadantag t ths mdl s ts snstty t th D ll. Ths mdl s dsgnd f spcfc ccut cndtns. mmn-as nfguatn

c α nput mpdanc: 26 m Output mpdanc: Ω ltag gan: unt gan: L α α 1 L mmn-mtt nfguatn Th dd mdl can placd y th sst. ( ) 1 26 m mmn-mtt nfguatn

nput mpdanc: Output mpdanc: Ω ltag gan: unt gan: L mmn-llct nfguatn nput mpdanc: ( 1) Output mpdanc: ltag gan: unt gan: 1

Th Hyd qualnt Mdl Th fllwng hyd paamts a dlpd and usd f mdlng th tansst. Ths paamts can fund n th spcfcatn sht f a tansst. h nput sstanc h s tansf ltag at ( / ) 0 h f fwad tansf cunt at ( / ) h utput cnductanc Smplfd Gnal h-paamt Mdl h nput sstanc h f fwad tansf cunt at ( / )

s. h-paamt Mdl mmn-mtt h h f ac mmn-as h h f α 1 Th Hyd p Mdl Th hyd p mdl s mst usful f analyss f hgh-fquncy tansst applcatns. t lw fquncs th hyd p mdl clsly appxmat th paamts, and can placd y thm. mmn-mtt Fxd-as nfguatn Th nput s appld t th as Th utput s fm th cllct Hgh nput mpdanc Lw utput mpdanc Hgh ltag and cunt gan Phas shft twn nput and utput s 180

10 O 10 10 ) ( 10, 10 ) )( ( mmn-mtt Fxd-as nfguatn mmn-mtt Fxd-as alculatns nput mpdanc: ltag gan: Output mpdanc: unt gan:

2 1 10 10 unt gan fm ltag gan: mmn-mtt ltag-dd as mdl qus yu t dtmn,, and. alaculatns: nput mpdanc: Output mpdanc: ltag gan:

10, 10 10 ) )( ( ) ( 1) ( unt gan: unt gan fm ltag gan: mmn-mtt mtt-as nfguatn mpdanc alculatns nput mpdanc: Output mpdanc:

) ( Gan alculatns ltag gan: unt gan: unt gan fm ltag gan: mtt-fllw nfguatn Ths s als knwn as th cmmn-cllct cnfguatn. Th nput s appld t th as and th utput s takn fm th mtt. Th s n phas shft twn nput and utput.

>> ) ( 1) (, 1 >> mpdanc alculatns nput mpdanc: Output mpdanc: Gan alculatns ltag gan: unt gan:

unt gan fm ltag gan: mmn-as nfguatn Th nput s appld t th mtt. Th utput s takn fm th cllct. Lw nput mpdanc. Hgh utput mpdanc. unt gan lss than unty. y hgh ltag gan. N phas shft twn nput and utput. alculatns nput mpdanc:

Output mpdanc: ltag gan: α unt gan: α 1 mmn-mtt llct Fdack nfguatn Ths s a aatn f th cmmn-mtt fxd-as cnfguatn nput s appld t th as Output s takn fm th cllct Th s a 180 phas shft twn nput and utput alculatns nput mpdanc: 1 F

F F F F Output mpdanc: ltag gan: unt gan: llct D Fdack nfguatn Ths s a aatn f th cmmn-mtt, fxd-as cnfguatn Th nput s appld t th as Th utput s takn fm th cllct Th s a 180 phas shft twn nput and utput

F 1 F F F F alculatns nput mpdanc: Output mpdanc: ltag gan: unt gan: Tw-Pt Systms ppach

Ths appach: ducs a ccut t a tw-pt systm Pds a Thénn lk at th utput tmnals Maks t as t dtmn th ffcts f a changng lad Wth st t 0 : Th Th ltag acss th pn tmnals s: wh NL s th n-lad ltag gan. Th NL ffct f Lad mpdanc n Gan Ths mdl can appld t any cunt- ltag-cntlld amplf. ddng a lad ducs th gan f th amplf: L L NL L

s s NL s s s L L NL L ffct f Suc mpdanc n Gan Th factn f appld sgnal that achs th nput f th amplf s: Th ntnal sstanc f th sgnal suc ducs th all gan: mnd ffcts f S and L n ltag Gan ffcts f L :

ffcts f L and S : s s s s s s L L L NL ascadd Systms Th utput f n amplf s th nput t th nxt amplf Th all ltag gan s dtmnd y th pduct f gans f th nddual stags Th D as ccuts a slatd fm ach th y th cuplng capacts Th D calculatns a ndpndnt f th cascadng Th calculatns f gan and mpdanc a ntdpndnt - upld JT mplfs nput mpdanc, fst stag: Output mpdanc, scnd stag: 2 1

ltag gan: 1 2 1 2 1 2