Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Similar documents
[Q. Booklet Number]


AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

π = tanc 1 + tan x ...(i)

Important Facts You Need To Know/Review:

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

FREE Download Study Package from website: &

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

Accuplacer Elementary Algebra Study Guide

AP Calculus AB AP Review

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

Limit of a function:

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Riemann Integral Oct 31, such that

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

12.2 The Definite Integrals (5.2)

EXPECTED ANSWERS/VALUE POINTS SECTION - A

y udv uv y v du 7.1 INTEGRATION BY PARTS

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

National Quali cations AHEXEMPLAR PAPER ONLY

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

EXPONENTS AND LOGARITHMS

1.3 Continuous Functions and Riemann Sums

Add Maths Formulae List: Form 4 (Update 18/9/08)

QUESTION PAPER CODE 65/1/2 EXPECTED ANSWERS/VALUE POINTS SECTION - A. 1 x = 8. x = π 6 SECTION - B

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Pre-Calculus - Chapter 3 Sections Notes

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Introduction to Matrix Algebra

2a a a 2a 4a. 3a/2 f(x) dx a/2 = 6i) Equation of plane OAB is r = λa + µb. Since C lies on the plane OAB, c can be expressed as c = λa +

Convergence rates of approximate sums of Riemann integrals

Synopsis Grade 12 Math Part II

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

CITY UNIVERSITY LONDON

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

* power rule: * fraction raised to negative exponent: * expanded power rule:

ECE 102 Engineering Computation

Things I Should Know In Calculus Class

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

General properties of definite integrals

Dynamics of Structures

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

For students entering Honors Precalculus Summer Packet

Exponents and Radical

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

1 Tangent Line Problem

Approximate Integration

Lesson 4 Linear Algebra

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media

Graphing Review Part 3: Polynomials

Inner Product Spaces (Chapter 5)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Schrödinger Equation Via Laplace-Beltrami Operator

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Thomas Whitham Sixth Form

Chapter 2. LOGARITHMS

BC Calculus Review Sheet

Chapter 7 Infinite Series

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

Math 104: Final exam solutions

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

Orthogonality, orthogonalization, least squares

Algebra 2 Important Things to Know Chapters bx c can be factored into... y x 5x. 2 8x. x = a then the solutions to the equation are given by

If a is any non zero real or imaginary number and m is the positive integer, then a...

The Definite Riemann Integral

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018)

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

ANNUAL EXAMINATION - ANSWER KEY II PUC - MATHEMATICS PART - A

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

EXERCISE a a a 5. + a 15 NEETIIT.COM

Review of the Riemann Integral

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

MTH Assignment 1 : Real Numbers, Sequences

Area, Volume, Rotations, Newton s Method

Frequency-domain Characteristics of Discrete-time LTI Systems

MATHEMATICS PAPER & SOLUTION

Numerical Integration

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

( ) dx ; f ( x ) is height and Δx is

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Limits and an Introduction to Calculus

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Section 2.2. Matrix Multiplication

Objective Mathematics

Transcription:

olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile t. os( log ) log. d os tdt si tg Let log t d dt si(log ) si() he, t d whe, t log si(log ). Give ples re + + z 8, i.e. + + z 8 log d 5 + + z + 5, i.e. + + z + \ Diste 5 + 8 5+ 6 7 uits. 6 + + 5. + Y Y Y R T 6. Cosider os(si ) d d si(si ) (si ) si(si ) os d ( ) d d d si(si ) os si(si ) os d d F sisi mos si ( ) Mthemtis ()

7. Let side of equilterl trigle e m. \ Are A d da m/s d m /s dt dt Hee, side is m. 8. Give f() ( ) / i [, ] da d da dt dt dt Cotiuous i [, ] s lgeri epressio with positive epoet is otiuous. f () ( ) ( ) f () does ot eist t ot differetile t [, ] Hee, Rolle s Theorem is ot pplile. 9. Give lie is \ DR s re,, 6 + + Dividig + 9+ 6 7 7 6 5 6 z 7 z 5 6 6 \ Diretio osies of the lie re,,. 7 7 7. P(A B) P(A) P(A B) P(A B) Now, P(A). P(B) P(A B) 8 8 8 \ A d B re idepedet evets. P(A B) 8. Let lrge vs d smll vs e used. LPP is to miimise ost Z + ujet to ostrits, + 8 + Mthemtis ()

. Cosider + d + ( ) + d + e + d o + + t + C ( )( + ) + d +. Cosider t ( + ) + si + +...(i) t ( + ) si + + os + + Let t ( + ) q t q \ os q From (i) d (ii), we get os q os + + e + + o os + + + + + + + + ( + ), Both the vlues stisf (i). Hee,,.. Cosider + + + + + ( + + ) + + ( + + ) + e + + o...(ii) + + ( + + ) + + + + [B performig C C + (C + C )] [B tkig ( + + ) ommo from C ] [B performig R R R ] ( + + )[( ) ( + ) ( ) ( + )] ( + + )( + + + + ) ( + + )( + + ) + +. q + Mthemtis ()

5. Let t Let si q e o q si d t se Let os q e o q os si q t d t se e se os q o d os θ os θ t (t q) q se (se q) q si t os \ \ d d...(i) d d dt ' dt d d ( ) OR dt d...(ii) [From (i) d (ii)] Cosider log d log...(i) O differetitig oth sides w.r.t., we get d log d d log d d + d [From (i)] Agi differetitig w.r.t., we get d d + d + d d d d d d d Dividig throughout, we get 6. Cosider d d + d d d d 5+ os t t dt + 5+ f p + t ( + t ) 5+ 5t + t 9 t dt + t t + C t d t + C t dt + Let t t t t d t dt + t os + t Mthemtis ()

7. Cosider R / t t d se d d + os T / / < t F t d < t log se F d t log se ( log ) log log OR ( )( + ) For < <, ( )( )(+) > For < <, (+)( )(+) < For < <, (+)(+)(+) > d ( ) d + ( ) d + ( ) d e o + e o + e o 6 m+ m + m m + + + 8. + + + + d ( )( d + + ) d d For For + d, d + + d d + se q se qdq t q d + + d... (i) t dt t C # + + + C...(ii) d siq os q q si q si q os dt t ( t ) log log + os θ + + C os θ os θ + + + dq q e + dt o log t t + + + C...(iii) Let + t d dt Let t θ se θ dθ d Let os q t si q dq dt + t + + C t t + q t q Mthemtis (5)

ustitutig from (ii) d (iii) i (i), we get + log where C (ostt) C + C + + + + + C is the required solutio. 9. Let it+ j t + zkt...(i) ( it+ tj + kt ) ( it+ j t + zkt ) + + z...(ii) Also # i + j 8k it tj kt ti+ tj 8kt z (z )i t (z ) t j + ( )k t ti+ tj 8kt z...(iii) z...(iv) d 8...(v) From (ii) d (v), + z 6 From (iii) d (vi), we get (z ) + z 6 8z + z 6 9z 8 z From (iv) d (vi),, 5 \ 5it+ tj + kt OR it + tj + kt ^ it si α h + _ tj siβi + ^ kt si γh. Cosider reltios l + m + 5 _ si α+ si β+ si γi _ os α+ os β+ os γi ( os os os g) ( )...(vi) m l 5...(i) d 6m l + 5lm...(ii) 6( l 5) l + 5l( l 5) 8l l 5l 5l 5l + 5l + l + l + d l l + d + d l l + d + Mthemtis (6)

l l + or + l or l From (i), m 5 l m From (i), m 6 5 l m DR s :,, DR s :,, \ DR s re,, or,, \ os q + + + + + 6 q os d 6. Cse I: white lls d other oloured lls i g Cse II: white lls d other oloured ll i g Cse III: white lls d o other oloured ll i g E: white lls re drw P (I ) P (II ) P (III) P (E/I ) C C ; P (E/II) C C 6 ; P (E/III) C 6 C Usig Bes Theorem, proilit of drwig white lls from g whe ll the lls re white P (III/E ) PIII ( ). PEIII ( / ) PI (). PEI ( / ) + P( II). PEII ( / ) + P( III). PEIII ( / ) + + 6 6 6 6 5 + + 6. A: perso hs TB B: perso does ot hve TB ( i persos who hve TB) 999 P(A), P(B) E: perso is digosed to hve TB P(E/A).99; P(E/B). Mthemtis (7)

Usig Bes Theorem, proilit tht perso tull hs TB whe he is digosed to hve TB. P(A/E) PA ( ) PE ( A) PA ( ) PE ( A) + P( B) P( E B) 99. 999 99. +. 99 99 99 + 999 989 er msk or use loth whe oughig. Mediies must e tke s direted dotor.. Drw grph of iequlities +,, + ;,. The fesile regio determied the ostrits, +,, +, d is show; ABCDA is the fesile regio. The orer poits of the fesile regio re A(, 5), B(, ), C(5, ) d D(, ). The vlues of Z t these orer poits re s follows: Corer poits Z + A(, 5) Miimum B(, ) Miimum C(5, ) 5 D(, ) Mimum The mimum vlue of Z is t (, ) d the miimum vlue of Z is t ll the poits o the lie segmet joiig the poits (, 5) d (, ). Mthemtis (8)

R os si. Cosider A si os T os si A si os os + si Mtri formed oftors of eh elemet i A R A os α A si α A A si α A os α A A A A T R os si l os si \ Adj A si os si os T R os α si α R os α si α \ A Adj A si α os α si α os α A R T T os si R os si Cosider AA si os si os T R T os α+ si α osαsi α siαos α + osαsi α siαos α si α+ os α + + + + + + + + TR I T OR Give A G; B G (A + B) (A + B) (A + B) AA + AB + BA + BB (A + B) A + AB + BA + B Give (A + B) A + B \ AB + BA O...(i) AB G G G BA G G + G + From (i), G + + G G + Mthemtis (9)

+ G G + ; ; Hee,, stisfies ll four equtios. 5. For refleive: Let for (, ) A A (, ) R (, ) + +, true. Hee, refleive. For smmetri: Let for (, ), (, d) A A For trsitive: (, ) R (, d) + d + + d + (, d) R (, ) Hee, smmetri. Let for (, ), (, d), (e, f) A A (, ) R (, d) d (, d) R (e, f) + d + d + f d + e + d + + f + + d + e + f + e (, ) R (e, f). Hee, R is trsitive As reltio R is refleive, smmetri d trsitive. Hee, R is equivlee reltio. Equivlee lss [(, )] (, ) R (, ) + + Give A {,,,..., } \ Ordered pirs e (, ), (, ), (, ), (, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, ) \ [(, )] {(, ), (, ), (, ), (, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, )} OR Give f : N Y where Y { : N} defied f(). To show f is ivertile, we hve to show tht it is ijetive. For oe-oe: Let for, N For oto: f( ) f( ) Hee, oe-oe Let for some Y, there eists N suh tht N. Hee, oto. As futio is oe-oe d oto. Hee, f is ivertile. e defie futio g : Y N s g(). Cosider fog() f(g()) f ( ) ( ) d gof() g(f()) g( ) As fog I Y d gof I N Mthemtis ()

f is ivertile d g is iverse of f Hee, f () 6. Let squre of side m e ut off from ll orers. The l 5,, h \ olume () (5 ) ( ) (5 ) ( ) d (5 ) ( ) + ( ) ( ) d 8 8 8 + 8 8 + 76 + 8 ( + 9) 5 m m ( 8) ( 5) For mimum, d 8 or 5 5, 8, ( 8 ot possile) d d d [( 8) + ( 5) ] d H ( + ) < d 5 \ For 5, volume is mimum. Hee, squre of side 5 m must e ut off to mke se of mimum volume. 7. Give the irle + d the lie. O plottig the urve d lie, we otie we hve to fid re of shded portio. As the urve is smmetril to the -is. \ Are re (LBA) d d + si G > e + si o * + si e oh f p e o e o sq uits. 8 d 8. Cosider equtio t d d O Y L B A(, ) d d t d Fd Hee, homogeeous. Mthemtis ()

λ λ λ As Fd td td Fd λ λ λ d dv Let v v + d d v + dv v t v d t v dv d ot vdv d log si v log + log log si v log C si is the required solutio. 9. If lies re oplr, the z z. Here d,, z + d; α δ, α, α + δ d,, z + ; β γ, β, β + γ. + d + d α δ β γ α β α+ δ β+ γ B performig C C + C, we get + d α α α+ δ β β β+ γ + d α α α+ δ β β β+ γ, True, s C d C re idetil. Hee, the lies re oplr. OR Ple determied the poits A(, 5, ), B(,, 5) d C(5,, ) is 5 z + 5 5 5 5+ + 5 z + 8 8 ( )(6) ( 5)( ) + (z + )() Mthemtis ()

6 + + z + 96 6 + + z 56 + + z 7 Diste of the poit P(7,, ) from the ple + + z 7 is 7+ + 7 + 9+ 6 + 6+ 6 7 9 9 uits. Mthemtis ()