Modern aspects in magnetic structure and dynamics

Similar documents
Simulations of magnetic molecules

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

A short introduction into molecular magnetism (With special emphasis on frustrated antiferromagnetic molecules)

Frustration effects in magnetic molecules

The Osnabrück k-rule for odd antiferromagnetic rings

Frustration-induced exotic properties of magnetic molecules

Frustration effects in magnetic molecules

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

Frustration effects in magnetic molecules. Department of Physics University of Osnabrück Germany

Frustration effects in magnetic molecules. Fachbereich Physik - Universität Osnabrück

What do magnetic molecules teach us about magnetism?

Modeling of isotropic and anisotropic magnetic molecules

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 }

Enhanced magnetocaloric effect in strongly frustrated magnetic molecules

Magnetic Molecules are tomorrows bits synthetic?

Magnetism in zero dimensions physics of magnetic molecules

Trends in molecular magnetism: a personal perspective

Yes, we can! Advanced quantum methods for the largest magnetic molecules

Trends, questions and methods in molecular magnetism

Extreme magnetocaloric properties of Gd 10 Fe 10 sawtooth spin rings: a case study using the finite-temperature Lanczos method

Exploring Magnetic Molecules with Classical Spin Dynamics Methods

Quantum Theory of Molecular Magnetism

arxiv: v1 [cond-mat.str-el] 22 Jun 2007

arxiv:cond-mat/ Oct 2001

8 Quantum Theory of Molecular Magnetism

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Mar 2005

The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet on Square-Kagomé Lattice: Resonating Valence Bond Description

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

arxiv: v1 [cond-mat.str-el] 2 Dec 2009

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

Degeneracy Breaking in Some Frustrated Magnets

arxiv:cond-mat/ v1 12 Dec 2006

arxiv:quant-ph/ v2 24 Dec 2003

Weak antiferromagnetism and dimer order in quantum systems of coupled tetrahedra

Dynamics and Thermodynamics of Artificial Spin Ices - and the Role of Monopoles

Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings

arxiv:cond-mat/ v2 [cond-mat.str-el] 17 Sep 2007

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Quantum spin systems - models and computational methods

Geometry, topology and frustration: the physics of spin ice

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Multiple nearest-neighbor exchange model for the frustrated magnetic molecules {Mo 72 Fe 30 } and {Mo 72 Cr 30 }

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

Coupled Cluster Theories of Quantum Magnetism

arxiv: v2 [physics.atm-clus] 9 May 2008

arxiv: v1 [cond-mat.stat-mech] 16 Feb 2015

Electron Correlation

WORLD SCIENTIFIC (2014)

Spin liquids in frustrated magnets

Transition Elements. pranjoto utomo

I. Molecular magnetism and single-molecule magnets

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

arxiv: v1 [physics.comp-ph] 27 Sep 2018

Coupled Cluster Method for Quantum Spin Systems

Decoherence in molecular magnets: Fe 8 and Mn 12

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic.

Spin electric coupling and coherent quantum control of molecular nanomagnets

Effects of geometrical frustration on ferromagnetism in the Hubbard model on the Shastry-Sutherland lattice

Tutorial on frustrated magnetism

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Multiple spin exchange model on the triangular lattice

Competing Ferroic Orders The magnetoelectric effect

Magnetic Monopoles in Spin Ice

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris

Small and large Fermi surfaces in metals with local moments

Magnetic ordering of local moments

Numerical study of magnetization plateaux in the spin-1/2 kagome Heisenberg antiferromagnet

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Geometrical frustration, phase transitions and dynamical order

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen

Magnetic Monopoles in Spin Ice

Solving the sign problem for a class of frustrated antiferromagnets

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains

Spin liquids on ladders and in 2d

An introduction to magnetism in three parts

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

arxiv: v2 [cond-mat.str-el] 13 Apr 2015

Numerical diagonalization studies of quantum spin chains

Magnetic monopoles in spin ice

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3

The Gutzwiller Density Functional Theory

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon

Probing Magnetic Order with Neutron Scattering

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

Gauge dynamics of kagome antiferromagnets. Michael J. Lawler (Binghamton University, Cornell University)

QUANTUM CHEMISTRY FOR TRANSITION METALS

Dzyaloshinsky-Moriya-induced order in the spin-liquid phase of the S =1/2 pyrochlore antiferromagnet

Beyond the Giant Spin Approximation: The view from EPR

Entanglement in Many-Body Fermion Systems

Luigi Paolasini

Ground State Projector QMC in the valence-bond basis

Spontaneous Spin Polarization in Quantum Wires

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Transcription:

Modern aspects in magnetic structure and dynamics Jürgen Schnack Department of Physics University of Bielefeld Germany http://obelix.physik.uni-bielefeld.de/ schnack/ Modern Aspects in Nuclear Structure and Reactions Hirschegg, January 16, 2008 unilogo-m-rot.jpg

? Today s perspective From today s perspective: nuclei and magnetic molecules share many interesting properties unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 1/38

? Today s perspective I Today s perspective I finite quantum systems nuclei built of nucleons coordinates, spins, isospins H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000) magnetic molecules containing paramagnetic ions spins, phonons J. Schnack, in Lecture Notes in Physics 645, 155 (2004) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 2/38

? Today s perspective II Today s perspective II correlated eigenstates many-body effects short-range correlations H. Feldmeier, T. Neff, R. Roth, J. Schnack, Nucl. Phys. A 632, 61 (1998) many-body effects geometric frustration J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 3/38

? Today s perspective III Today s perspective III phase transitions 0.5 0.4 up cycle (simulation) down cycle (simulation) analytical results M/M sat 0.3 0.2 0.1 T = 0 0 0 0.1 0.2 0.3 0.4 0.5 B/B sat nuclear caloric curve first order phase transition (boiling) J. Schnack, H. Feldmeier, Phys. Lett. B 409, 6 (1997) metamagnetic (T = 0) phase transition first order, hysteresis C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett. 94, 207203 (2005) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 4/38

? Problematic start But at the beginning: the start was a bit problematic unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 5/38

? Problematic start I Problematic start I Trabant against Mercedes At the very day of my arrival in September 1991: annual works outing (Betriebsausflug) to Kloster Lorsch; did not know the way, could not follow on the Autobahn!... unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 6/38

? Problematic start II Problematic start II attraction won Crashed a chair in the restaurant! Got drunk at the wine tasting! Drove back trough dark night, crossing the Rhine with a ferry,... Had to redo my exams in Theoretical and Experimental Physics! 1 It all proves the attraction of Hans Feldmeier s group! 1 Has nothing to do with the points above! unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 7/38

? Contents for you today Contents for you today 1. The suspects: magnetic molecules 2. Independent magnons on frustrated antiferromagnets 3. Metamagnetic phase transitions Fe 10 unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 8/38

? Magnetic Molecules Magnetic Molecules unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 9/38

? The beauty of magnetic molecules I The beauty of magnetic molecules I Inorganic or organic macro molecules, where paramagnetic ions such as Iron (Fe), Chromium (Cr), Copper (Cu), Nickel (Ni), Vanadium (V), Manganese (Mn), or rare earth ions are embedded in a host matrix; Pure organic magnetic molecules: magnetic coupling between high spin units (e.g. free radicals); Mn 12 Speculative applications: magnetic storage devices, magnets in biological systems, lightinduced nano switches, displays, catalysts, transparent magnets, qubits for quantum computers. unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 10/38

? The beauty of magnetic molecules II The beauty of magnetic molecules II Dimers (Fe 2 ), tetrahedra (Cr 4 ), cubes (Cr 8 ); Rings, especially iron and chromium rings Complex structures (Mn 12 ) drosophila of molecular magnetism; Soccer balls, more precisely icosidodecahedra (Fe 30 ) and other macro molecules; Chain like and planar structures of interlinked magnetic molecules, e.g. triangular Cu chain: J. Schnack, H. Nojiri, P. Kögerler, G. J. T. Cooper, L. Cronin, Phys. Rev. B 70, 174420 (2004); Sato, Sakai, Läuchli, Mila,... unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 11/38

? The beauty of magnetic molecules III The beauty of magnetic molecules III Energy Anisotropy barrier Single Molecule Magnets (SMM): magnetic molecules with large ground state moment; e.g. S = 10 for Mn 12 or Fe 8 Orientation Anisotropy barrier dominates behavior (as in your hard drive); Magnetization Field Single molecule is a magnet and shows metastable magnetization and hysteresis; but also magnetization tunneling. Today s major efforts: improve stability of magnetization; investigate on surfaces. unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 12/38

? Model Hamiltonian Model Hamiltonian Heisenberg-Model H = i,j s (i) J ij s (j) + i,j D ij [ ] s (i) s (j) + µ B B Exchange/Anisotropy Dzyaloshinskii-Moriya Zeeman N i g i s z(i) Very often anisotropic terms are utterly negligible, then... H = J ij s (i) s (j) + g µ B B i,j Heisenberg Zeeman N i s z (i) The Heisenberg Hamilton operator together with a Zeeman term are used for the following considerations; J < 0: antiferromagnetic coupling. unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 13/38

? Definition of frustration Definition of frustration Simple: An antiferromagnet is frustrated if in the ground state of the corresponding classical spin system not all interactions can be minimized simultaneously. A B A B Advanced: A non-bipartite antiferromagnet is frustrated. A bipartite spin system can be decomposed into two sublattices A and B such that for all exchange couplings: J(x A, y B ) g 2, J(x A, y A ) g 2, J(x B, y B ) g 2, cmp. (1,2). B A A B B A A B (1) E.H. Lieb, T.D. Schultz, and D.C. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961) (2) E.H. Lieb and D.C. Mattis, J. Math. Phys. 3, 749 (1962) B A B A unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 14/38

? Fe 30 and friends Independent magnons on frustrated antiferromagnets unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 15/38

? Fe 30 and friends Fe 30 and friends Corner sharing triangles and tetrahedra + + + Several frustrated antiferromagnets show an unusual magnetization behavior, e.g. plateaus and jumps. Example systems: icosidodecahedron, kagome lattice, pyrochlore lattice. unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 16/38

? Rotational bands in non-frustrated antiferromagnets Rotational bands in non-frustrated antiferromagnets φ B A B A B A Often minimal energies E min (S) form a rotational band: Landé interval rule (1); For bipartite systems (2,3): H eff = 2 J eff S A S B; Lowest band rotation of Néel vector, second band spin wave excitations (4). (1) A. Caneschi et al., Chem. Eur. J. 2, 1379 (1996), G. L. Abbati et al., Inorg. Chim. Acta 297, 291 (2000) (2) J. Schnack and M. Luban, Phys. Rev. B 63, 014418 (2001) (3) O. Waldmann, Phys. Rev. B 65, 024424 (2002) (4) P.W. Anderson, Phys. Rev. B 86, 694 (1952), O. Waldmann et al., Phys. Rev. Lett. 91, 237202 (2003). unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 17/38

? Giant magnetization jumps in frustrated antiferromagnets I Giant magnetization jumps in frustrated antiferromagnets I {Mo 72 Fe 30 } Close look: E min (S) linear in S for high S instead of being quadratic (1); Heisenberg model: property depends only on the structure but not on s (2); Alternative formulation: independent localized magnons (3); (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001) (2) H.-J. Schmidt, J. Phys. A: Math. Gen. 35, 6545 (2002) (3) J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 18/38

? Giant magnetization jumps in frustrated antiferromagnets II Giant magnetization jumps in frustrated antiferromagnets II Localized Magnons 5 localized magnon = 1 2 ( 1 2 + 3 4 ) 1 2 1 = s (1)... etc. 8 4 3 6 H localized magnon localized magnon 7 Localized magnon is state of lowest energy (1,2). Triangles trap the localized magnon, amplitudes cancel at outer vertices. (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001) (2) H.-J. Schmidt, J. Phys. A: Math. Gen. 35, 6545 (2002) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 19/38

? Giant magnetization jumps in frustrated antiferromagnets Giant magnetization jumps in frustrated antiferromagnets Kagome Lattice + + + Non-interacting one-magnon states can be placed on various lattices, e. g. kagome or pyrochlore; Each state of n independent magnons is the ground state in the Hilbert subspace with M = Ns n; Kagome: max. number of indep. magnons is N/9; 1 0.8 7/9 Linear dependence of E min on M (T = 0) magnetization jump; m(h) 0.6 0.4 2/3 2.6 3 Jump is a macroscopic quantum effect! 0.2 N=27 36 45 54 0 0 1 2 3 h A rare example of analytically known many-body states! J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002) J. Richter, J. Schulenburg, A. Honecker, J. Schnack, H.-J. Schmidt, J. Phys.: Condens. Matter 16, S779 (2004) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 20/38

? Magnetocaloric effect I Magnetocaloric effect I Giant jumps to saturation E M M= 4 M= 3 M= 2 M= 1 M(T=0,B) B Many Zeeman levels cross at one and the same magnetic field. High degeneracy of ground state levels large residual entropy at T = 0. ( ) T = T B S C ( ) S B T J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002) A. Honecker, J. Richter, Condensed Matter Physics 8, 813 (2005) H.-J. Schmidt, Johannes Richter, Roderich Moessner, J. Phys. A: Math. Gen. 39, 10673 (2006) O. Derzhko, J. Richter, A. Honecker, H.-J. Schmidt, Low Temp. Phys. 33, 745 (2007) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 21/38

? Magnetocaloric effect II Magnetocaloric effect II Isentrops of af s = 1/2 dimer 2 1.5 T T B isentropes a b Magnetocaloric effect: (a) reduced, (b) the same, 1 (c) enhanced, 0.5 d c (d) opposite when compared to an ideal paramagnet. 0 B 0 0.5 1 1.5 2 2.5 3 Case (d) does not occur for a paramagnet. blue lines: ideal paramagnet, red curves: af dimer unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 22/38

? Magnetocaloric effect III Magnetocaloric effect III Molecular systems Cuboctahedron: high cooling rate due to independent magnons; Ring: normal level crossing, normal jump; Icosahedron: unusual behavior due to edge-sharing triangles, high degeneracies all over the spectrum; high cooling rate. J. Schnack, R. Schmidt, J. Richter, Phys. Rev. B 76, 054413 (2007) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 23/38

? Metamagnetic phase transitions Metamagnetic phase transitions unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 24/38

? Metamagnetic phase transition I Metamagnetic phase transition I Hysteresis without anisotropy M/M sat 0.5 0.4 0.3 0.2 0.1 up cycle (simulation) down cycle (simulation) analytical results T = 0 0 0 0.1 0.2 0.3 0.4 0.5 B/B sat Heisenberg model with isotropic nearest neighbor exchange Hysteresis behavior of the classical icosahedron in an applied magnetic field. Classical spin dynamics simulations (thick lines). Analytical stability analysis (grey lines). C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett. 94, 207203 (2005) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 25/38

? Metamagnetic phase transition II Metamagnetic phase transition II Non-convex minimal energy E 0 E E 1 M E 2 M Minimal energies realized by two families of spin configurations (1): E 1 (M) 4-θ-family, E 2 (M) decagon family B M 1 M 0 M 2 M Overall minimal energy curve is not convex. Maxwell construction yields (T = 0) 1st order phase transition at B c (1,2,3) B C B (M) 1 B2(M) (T = 0) magnetization dynamics extends into metastable region. M M M M 1 0 2 (1) C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett. 94, 207203 (2005) (2) D. Coffey and S.A. Trugman, Phys. Rev. Lett. 69, 176 (1992) (3) C. Lhuillier and G. Misguich, in High Magnetic Fields, Eds. C. Berthier, L. Levy, and G. Martinez, Springer (2002) 161-190 unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 26/38

? Metamagnetic phase transition III Metamagnetic phase transition III Quantum icosahedron Quantum analog: Non-convex minimal energy levels magnetization jump of M > 1. Lanczos diagonalization for various s Theory achievement: work with vectors with 10 9 entries. True jump of M = 2 for s = 4. Polynomial fit in 1/s yields the classically observed transition field. C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett. 94, 207203 (2005) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 27/38

? Numerics If it comes to numerics: we don t know any fear! unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 28/38

? Numerics I Numerics I IBM 3090 at GSI One day in the early 90s Prof. Nörenberg came and showed a kind of bill where computer time on the IBM 3090 was listed. A guy (TP38 Guess who it was?) had used 1/3 of GSI s annual computer time! unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 29/38

à á á à p? 6 } Numerics II Numerics II today I am using 100 % BULL NovaScale Server 3045: Future: wide open 8 ITANIUM TUKWILA (a 4 cores), 512 GB RAM (an amazing computer power) Now: 4 ITANIUM MONTECITO (a 2 cores), 64 GB RAM (already an amazing computer power, but one can get used to it ;-) ) unilogo-m-rot.jpg Ju rgen Schnack, Modern aspects in magnetic structure and dynamics 30/38

? Collaboration Many thanks to my collaborators worldwide T. Englisch, T. Glaser, S. Leiding, A. Müller, Chr. Schröder (Bielefeld) K. Bärwinkel, H.-J. Schmidt, M. Allalen, M. Brüger, D. Mentrup, D. Müter, M. Exler, P. Hage, F. Hesmer, K. Jahns, F. Ouchni, R. Schnalle, P. Shchelokovskyy, S. Torbrügge & M. Neumann, K. Küpper, M. Prinz (Osnabrück); M. Luban, D. Vaknin (Ames Lab, USA); P. Kögerler (RWTH, Jülich, Ames) J. Musfeld (U. of Tennessee, USA); N. Dalal (Florida State, USA); R.E.P. Winpenny (Man U, UK); L. Cronin (U. of Glasgow, UK); H. Nojiri (Tohoku University, Japan); A. Postnikov (U. Metz) J. Richter, J. Schulenburg, R. Schmidt (U. Magdeburg); S. Blügel (FZ Jülich); A. Honecker (U. Göttingen); E. Rentschler (U. Mainz); U. Kortz (IUB); A. Tennant, B. Lake (HMI Berlin); B. Büchner, V. Kataev, R. Klingeler, H.-H. Klauß (Dresden) unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 31/38

? Collaboration at GSI It all started at GSI with... Hans Feldmeier Konrad Bieler, Jörg Lindner, Thomas Neff, Robert Roth, J.S. L. Mornas, L. Razumov, G. Papp,... J. Knoll, B. Friman, P. Henning, W. Nörenberg, Chr. Sauermann, W. Weinhold, J. Randrup,... unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 32/38

? It was a good time I It was a good time I I learned physics during my Ph.D.! unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 33/38

? Many-body physics in action Many-body physics in action spectator } two-body correlation unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 34/38

? Information German Molecular Magnetism Web www.molmag.de Highlights. Tutorials. Who is who. DFG SPP 1137 unilogo-m-rot.jpg Jürgen Schnack, Modern aspects in magnetic structure and dynamics 35/38