Construction of new Non-standard Finite Difference Schemes for the. Solution of a free un-damped Harmonic Oscillator Equation

Similar documents
Numerical Schemes Based on Non-Standard Methods for Initial Value Problems in Ordinary Differential Equations

Differential Equations

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

M A : Ordinary Differential Equations

Section 3.7: Mechanical and Electrical Vibrations

Unforced Mechanical Vibrations

Physics lab Hooke s Law and Pendulums

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

M A : Ordinary Differential Equations

Chapter 15. Oscillatory Motion

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Section Mass Spring Systems

2.4 Harmonic Oscillator Models

F = ma, F R + F S = mx.

Oscillatory Motion SHM

Second-Order Linear Differential Equations C 2

Applications of Second-Order Differential Equations

2.4 Models of Oscillation

General Physics I Spring Oscillations

Ch 3.7: Mechanical & Electrical Vibrations

11. Some applications of second order differential

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Chapter 13. Simple Harmonic Motion

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

8. More about calculus in physics

Mass on a Horizontal Spring

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Unit 7: Oscillations

Chapter 14 Oscillations

Symmetries 2 - Rotations in Space

3.4 Application-Spring Mass Systems (Unforced and frictionless systems)

ARTICLE IN PRESS Mathematical and Computer Modelling ( )

Math 240: Spring-mass Systems

Oscillations. Oscillations and Simple Harmonic Motion

4.9 Free Mechanical Vibrations

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Thursday, August 4, 2011

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

Do not turn over until you are told to do so by the Invigilator.

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

Physics for Scientists and Engineers 4th Edition, 2017

Unforced Oscillations

Application of Second Order Linear ODEs: Mechanical Vibrations

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

The object of this experiment is to study systems undergoing simple harmonic motion.

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

Math 304 Answers to Selected Problems

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

General Response of Second Order System

Introduction to Differential Equations

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018

Lab 11. Spring-Mass Oscillations

Simple Harmonic Oscillator

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

Chapter 14: Periodic motion

Section 8.5. z(t) = be ix(t). (8.5.1) Figure A pendulum. ż = ibẋe ix (8.5.2) (8.5.3) = ( bẋ 2 cos(x) bẍ sin(x)) + i( bẋ 2 sin(x) + bẍ cos(x)).

Faculty of Computers and Information. Basic Science Department

Chapter 14 Periodic Motion

1) SIMPLE HARMONIC MOTION/OSCILLATIONS

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION

Vibrations and Waves MP205, Assignment 4 Solutions

for non-homogeneous linear differential equations L y = f y H

a. Determine the potential energy of the spring as a function of displacement.

DIFFERENTIAL EQUATIONS

Physics 4A Lab: Simple Harmonic Motion

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO

The dimensions of an object tend to change when forces are

Lab 14 - Simple Harmonic Motion and Oscillations on an Incline

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

Math 1302, Week 8: Oscillations

PHYSICS 211 LAB #8: Periodic Motion

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS

Section 1 Simple Harmonic Motion. The student is expected to:

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam

CHAPTER 6 WORK AND ENERGY

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics

AP Physics C: Work, Energy, and Power Practice

Math Assignment 5

Chapter 11 Vibrations and Waves

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Differential Equations: Homework 8

Fundamentals Physics. Chapter 15 Oscillations

Special Mathematics Higher order linear equations

Chapter 14 (Oscillations) Key concept: Downloaded from

Simple Harmonic Motion

Simple Harmonic Motion

Simple Harmonic Motion

18.12 FORCED-DAMPED VIBRATIONS

Forced Mechanical Vibrations

Simple Harmonic Motion. A physics laboratory exploring simple harmonic motion and some authentic scientific practices.

5.6 Unforced Mechanical Vibrations

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

Transcription:

Construction of new Non-standard Finite Difference Schemes for the Abstract Solution of a free un-damped Harmonic Oscillator Equation Adesoji A.Obayomi * Adetolaju Olu Sunday Department of Mathematical Sciences, Ekiti State University, Ado-Ekiti/ Nigeria. * Tel: +234-8-379-73, xlconsummate@yahoo.com In this paper we discussed the numerical solution to the model of a freely suspended spring with a mass attached. Suitable nonstandard finite difference schemes were developed for the solution of the resulting dynamical system which follows a free un-damped harmonic oscillator. The result of the numerical experiment on the schemes are illustrated with 3D graphs. Keywords: Numerical methods, Non-Local Approximations, Non-standard finite difference schemes, Qualitative properties, Free un-damped Harmonic Oscillator, Monotonicity of solution.. Introduction The solutions of continuous dynamical systems given by systems of ordinary differential equations are typically computed by various numerical procedures defined on discretized time meshes. It is a well known fact that finite difference scheme is one of the oldest and popular techniques for numerical solution of ordinary differential equations. In most of the equations in mathematical physics, engineering and in some physical sciences, finite difference schemes have been designed and investigated both from the theoretical point view, which is the convergence aspect, and the practical point of view which is the consistency and stability point of view (Anguelov and Lubuma, 2). Non-standard finite difference schemes (NSFD) have emerged as an alternative method for solving a wide range of problems whose mathematical models involve algebraic, differential and biological models as well as chaotic systems (Mickens 25). These techniques have many advantages over classical techniques and provide an efficient numerical solution. In fact, the non-standard finite difference method is an extension of the standard finite difference method. Non-standard schemes as introduced by Mickens (989,99,994) are used to help resolve some of the issues related to numerical instabilities. Furthermore, Mickens (999,2,25) introduced certain rules for obtaining the best difference equations, one of the most important is the selection of a suitable denominator function for the dicrete derivatives. Equation of motion of a spring suspended freely with a mass attached The major reference for this model is Zill (25). When a spring is suspended vertically from a rigid support, then we can assume that the spring do not exert any force. We can then consider a body of mass M attached to the free end so that the amount of stretch depend on the value of M. If we displace the body by a distance S then the spring exerts a restoring force F= -ks, where k> is the spring constant following Hooke s Law. Let us neglect t the air 9

resistance and there are no retardation force acting against the direction of motion(i.e free and un-damped motion). At the equilibrium point the weight M x g and the initial force exerted by the stiffness of the spring are equal in magnitude i.e Mg = ks. If the body is displaced by a distance x from the equilibrium position then the restoring force is k(x+s). Since there are no external forces acting on the body against the direction of motion, then we can use the Newton s second Law to represent the free motion of the displacement from the equilibrium point by the expression M d2 x dt2 = - k(x+s) + Mg () If we substitute the fact that Mg = ks then the equation may be written as dt 2 + k x = (2) Which can also be written as dt 2 +w2 x = (3) Where w 2 = k/m Any dynamic system whose function obey the equation above is said to perform a simple free undamped harmonic motion 2. Derivation of the Nonstandard Finite Difference Schemes There are quite a large number of numerical methods that may be used for obtaining approximate solution of a second order ordinary differential equation among which Finite difference schemes have been in the fore front. While the aforementioned techniques are rather successful at dealing with generic differential equations, they can often come unstuck for some particular problems of interest that arise in applications, particularly when such problems exhibit special properties such as symmetries or conservation laws, or when there are solutions with some special structure. Non-standard schemes as introduced by Mickens (989,99,994) are used to help resolve some of the issues related to numerical instabilities. Furthermore, Mickens (999,2,25) introduced certain rules for obtaining the best difference equations. Many authors including [], [2], [5], have been contributing to this new technique. Such techniques produce numerically stable schemes which provide reliable solution to the differential equation and carried along the dissipative & qualitative properties of the original equation. In this paper we will employ Mickens five point rule to obtain a new numerical scheme for the solution of the model of a suspended spring with mass attached on a free motion. 2. Construction Consider the equation in (3) The analytic solution is of the form The component dt 2 X k+ 2X k + X k h ccoswt + c2sinwt of equation (3) may be approximated in the following manner: w 2 x w 2 (X k ) (5) (4) 92

Using Micken s rules 2 and 3,and the subsequent non-local approximation technique introduced by Angueluv and Lubume (23), the denominator function h must be replaced by a much more complex function of the step size h. Experience has shown that such functions perform better when it is related to a particular solution of the ordinary differential equation. This is referred to as the renormalization of the denominator function. Mickens (994) in his paper has shown that such function must obey the following conditions to avoid numerical instability: = h + O(h 2 ) for first derivative = h 2 + O(h 4 ) for second derivative For the first derivative the following are suitable functions: Sin(h), -e h etc. For the second derivative the following are suitable functions: sin 2 (h), h( e λh λ ) etc. Hence we may rewrite equation (4) in the form dt 2 X k+ 2X k + X k h = X k+ 2X k + X k (6) = 4sin 2 ( h 2 ) (7) The rule 3 also required that the subsequent terms be approximated as a linear combination of several point on the grid. Hence we may approximate the other term as follows: w 2 x w 2 (ax k + bx k+ ), a+b= (8) w 2 x w 2 (ax k+ + bx k + cx k ), a+b+c= (9) w 2 x w 2 ( 2X k+x k+ ) () 3 3. Construction of new schemes We will now apply the above technique to construction of new scheme s. Consider a slipping chain under free un-damped motion which obeys a second order ordinary differential equation given by: dt 2 + 64x =, y() = 2/3, y () = -4/3 () It can be verified that the analytic solution is X(t) = 2 cos8t- sin8t (2) 3 6 3. Construction of Scheme Applying X k+ 2X k + X k = 4sin 2 ( h 2 ) equations (6,7,8 and ) we can write + 64 (ax k+ + bx k ) =, a+b= (3) X k+ 2X k + X k + 64 ϕ(ax k+ + bx k ) = (4) X k+ (+ 64aϕ) = (2-64bϕ) X k X k (5) (i). X k+ = (2 4 ϕ) X k X k + 4 ϕ (6) 93

3.2 Construction of Scheme 2 Since cos(h 2 ) is very close to unit for small h we may : (ii). Substitute a=/4 and b = 3ψ/4, ψ= cos(h ), ϕ = sin2 (4h) in (6) to get a new scheme X k+ = (2 4 ) X k X k + 4 ϕ (7) 3.3 Construction of Scheme 3 Another scheme can be obtained by applying equations 6,7 and 9 in equation () thus X k+ 2X k + X k So that + 64 (ax k+ + bx k + cx k ) =, a=b=c=/3 (8) (iii). X k+ (+ 6 6 ϕ) = (2- ϕ) X 3 3 k ( + 6 ϕ)x 3 k (9) X k+ = (2 6 3 ϕ) X k (+ 6 3 ϕ)x k (+ 6 3 ϕ) (2) 3.4 Construction of Scheme 4 ϕ = 4 sin2 (2h) or h( e λh λ We can also use a direct substitution of equation 6 in equation () ) to obtain: So that X k+ 2X k + X k + 64 (X k ) =, (2) (iv). X k+ = (2 64bϕ) X k X k (22) The ϕ = 4 sin2 (2h) or h( e λh λ ) schemes will now be tested for consistency with the analytic solution in a numerical experiment 94

4. Performance of the schemes.5 -.5-4 7 3 6 9 22 25 28 3 34 37 4 43 46 49 Y Figure: Graph showing scheme and the analytic solution.5 -.5-2 3 4 5 6 7 8 9 Y2 Figure 2 Graph showing scheme 2 and the analytic solution.5 -.5-2 3 4 5 6 7 8 9 2 3 4 5 6 7 Y3 Figure 3: Graph showing scheme 3 and the analytic solution 95

4 27 4 53 66 79 92 5 8 3 44 57 7 83 96 Mathematical Theory and Modeling.5 -.5-4 7 3 6 9 22 25 28 3 34 37 4 43 46 Y4 Figure 4: Graph showing scheme 4 and the analytic solution 2-2 Y Y2 Y3 Y4 Figure 5: Graph showing all the schemes and the analytic solution 5. Summary and Conclusion It can be observed from that all the schemes produced solution curves whose behavior is consistent with the analytic solution for the first 2 iterations using a step length of h =.. The curves of schemes and 4 are more consistent for a larger number of iterations (see figure,4,5). For all oscillations, the amplitude remains constant with respect to time. We can conclude that the schemes carried along the qualitative properties of the free un-damped harmonic oscillator. With carefully chosen parameters a,b, and step function ϕ we can get as close as possible to the original curve of the particular harmonic oscillator. We can also conclude that, for a linear second order equation like the free un-damped harmonic motion it is enough to select parameters a and b such that a + b = for non-local approximation. It can be observed that the choice of h is restricted to a very small h for scheme 2 because of the term cosine(h). 96

References []. Anguelov R, Lubuma J.M.S. (2). Nonstandard finite difference method, by Non-local Approximation Keynote address at the South Africa Mathematical Society, Pretoria, South Africa 6-8 October, Notices of S. A. Math. Soc. 3: 43-543. [2]. Anguelov R, Lubuma J.M.S. (23). Nonstandard finite difference method by nonlocal approximation, Mathematics and Computers in simulation 6: 465-475. [3]. Ibijola E.A and Obayomi A.A. (22). A New Family Of Numerical Schemes for Solving the Combustion Equation. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 3 (3): 387-393 [4]. Ibijola E.A and Obayomi A.A. (22).A New Family Of Numerical Schemes for Solving Equation of the Type = ( ). Innova Sciencia vol 4 (6) pages 34-46 [5]. Mickens R.E. (994). Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore. Pp -5, 44-62 [6]. Potts R.B. (982) American Mathematically monthly 89, 42-47. Differential and Difference equations. [7]. Zill D.G and Cullen R.M. (25) Differential Equations with boundary value problems (sixth Edition) Brooks 97