Scanning Tunneling Microscopy and its Application

Similar documents
Solid Surfaces, Interfaces and Thin Films

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Tunneling Microscopy

Lecture 4 Scanning Probe Microscopy (SPM)

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

Concepts in Surface Physics

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Introduction to Scanning Tunneling Microscopy

Near-Field Nano/Atom Optics and Technology

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

STM spectroscopy (STS)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Instrumentation and Operation

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Vibrational Spectroscopy of Molecules on Surfaces

Introduction to Scanning Probe Microscopy Zhe Fei

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Surface Analysis - The Principal Techniques

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S.

Characterization of MEMS Devices

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Spring 2009 EE 710: Nanoscience and Engineering

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Experimental methods in physics. Local probe microscopies I

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Final Reading Assignment: Travels to the Nanoworld: pages pages pages

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

Local spectroscopy. N. Witkowski W. Sacks

Physics and Chemistry of Interfaces

Scanning Tunneling Microscopy Transmission Electron Microscopy

NTEGRA for EC PRESENTATION

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Fabrication at the nanoscale for nanophotonics

Core Level Spectroscopies

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy

Scanning Probe Microscopy (SPM)

Contents. Preface to the first edition

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

Surface Analysis - The Principal Techniques

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Semiconductor Physical Electronics

NIS: what can it be used for?

Surface physics, Bravais lattice

Today s SPM in Nanotechnology

Techniken der Oberflächenphysik (Techniques of Surface Physics)

SUPPLEMENTARY INFORMATION

Scanning Tunneling Microscopy. Wei-Bin Su, Institute of Physics, Academia Sinica

8 Summary and outlook

MODERN TECHNIQUES OF SURFACE SCIENCE

Supplementary Information:

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

Scanning Force Microscopy

Wafer-scale fabrication of graphene

ULTRATHIN ORGANIC FILMS

Scanning Tunneling Microscopy

Spectroscopy at nanometer scale

MSE 321 Structural Characterization

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Scanning probe microscopy of graphene with a CO terminated tip

Spectroscopies for Unoccupied States = Electrons

Low Temperature (LT), Ultra High Vacuum (UHV LT) Scanning Probe Microscopy (SPM) Laboratory

Catalysis by supported metal clusters and model systems

STM and graphene. W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

Nanostructure Fabrication Using Selective Growth on Nanosize Patterns Drawn by a Scanning Probe Microscope

EXPLORING SCANNING PROBE MICROSCOPY WITH MATHEMATICA

Nanomaterials and their Optical Applications

Solutions for Assignment-8

Scanning Probe Microscopy

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

CORE MOLIT ACTIVITIES at a glance

Microscopical and Microanalytical Methods (NANO3)

The interpretation of STM images in light of Tersoff and Hamann tunneling model

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs

(Scanning Probe Microscopy)

SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach

And Manipulation by Scanning Probe Microscope

Photoelectron Spectroscopy

CHARACTERIZATION of NANOMATERIALS KHP

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Graphene Fundamentals and Emergent Applications

Bandgap engineering through nanocrystalline magnetic alloy grafting on. graphene

Reducing dimension. Crystalline structures

MSN551 LITHOGRAPHY II

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Biomedical Nanotechnology. Lec-05 Characterisation of Nanoparticles

Crystalline Surfaces for Laser Metrology

Optics and Spectroscopy

Quantum Condensed Matter Physics Lecture 12

Lecture 12: Biomaterials Characterization in Aqueous Environments

Understanding the properties and behavior of groups of interacting atoms more than simple molecules

Nanoscale Chemical Imaging with Photo-induced Force Microscopy

Scanning tunneling microscopy

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

Transcription:

Chunli Bai Scanning Tunneling Microscopy and its Application With 181 Figures SHANGHAI SCIENTIFIC & TECHNICAL PUBLISHERS Jpl Springer

Contents 1. Introduction 1 1.1 Advantages of STM Compared with Other Techniques 1 1.2 From Optical Microscopy to Scanning Tunneling Microscopy 3 1.2.1 Electron Microscopes 3 1.2.2 Field Ion Microscope 4 1.2.3 Scanning Tunneling Microscope 5 1.3 Overview 7 2. The Tunneling Effect 10 2.1 Historical Remarks 11 2.2 Tunneling-Current Theory 16 2.2.1 Tunneling Current 17 2.2.2 Practical Tip and Surface Wave Functions 21 2.3 Tip-Surface Interaction Model 24 2.3.1 Tunneling Current 24 2.3.2 Tunnel Conductance 26 2.3.3 Tunneling Active Orbital at the Tip 28 2.3.4 Double-Tip and Interference Effects 29 3. Spectroscopy, and Spectroscopic Imaging 33 3.1 Concepts of Tunneling Spectroscopies 34 3.1.1 Solid-State-Barrier Tunneling 34 3.1.2 Metal-Vacuum-Metal Tunneling 35 3.2 Experimental Modes 38 3.2.1 Current-Voltage Characteristics 38 3.2.2 Current-Separation and Separation-Voltage Characteristics 40 3.2.3 Constant-Current Topography 41 3.2.4 Current-Imaging Tunneling Spectroscopy 41 3.3 Energy Resolution 43 3.4 Examples 44 3.4.1 Surface States 45 3.4.2 Adsorbate-Covered Surfaces 50 3.4.3 Superconductivity 52 3.4.4 Outlook 53 a) Influence of the Tip 54 b) Interpretation of Spectroscopy Results 54 VII

4. STM Instrumentation 56 4.1 The Vibration Isolation System 56 4.2 Mechanical Designs 60 4.2.1 Piezoelectric Ceramics 61 4.2.2 Three-Dimensional Scanners 64 4.2.3 Coarse Sample Positioning 67 4.2.4 STMs for Operation in Various Environments 69 4.3 Tip Preparation 72 4.3.1 Preparation of Tungsten Tips 73 4.3.2 Preparation of Pt-Ir Tips 76 4.3.3 Other Ways to Prepare STM Tips 80 4.3.4 Tip Treatment 81 4.4 Electronics 84 4.5 Computer Automation 87 4.5.1 Hardware 88 4.5.2 Software 89 4.5.3 Image Processing 91 a) Histogram Equalization 92 b) Convolution Filter 92 c) Statistical Differencing 93 d) Three-Dimensional Representation 94 5. Other Related Scanning Probe Microscopes 95 5.1 Atomic Force Microscope 95 5.1.1 The Force Sensor 96 5.1.2 Deflection Detection 101 5.1.3 Illustrating AFM Applications 104 5.2 Other Scanning-Force Microscopies HI 5.2.1 Lateral Force Microscope Ill 5.2.2 Force Microscope Operating in the Noncontact Mode. 113 5.2.3 Force Microscope Operating in the Tapping Mode... 114 5.2.4 Magnetic Force Microscope 116 5.2.5 Electrostatic Force Microscope 118 5.3 Ballistic-Electron-Emission Microscopy 121 5.3.1 The Principle of ВЕЕМ 121 5.3.2 The ВЕЕМ Experiment 123 5.3.3 The Application of ВЕЕМ 123 5.3.4 Ballistic-Hole Spectroscopy of Interfaces 127 5.4 Scanning Ion-Conductance Microscope 131 5.5 The Scanning Thermal Microscope 133 5.6 Scanning Tunneling Potentiometry and Scanning Noise Microscopy 134 5.7 Photon Scanning Tunneling Microscopy and Scanning Plasmon Near-Field Microscopy 136 VIII

5.8 Near-Field Scanning Optical Microscopy and Spectroscopy.. 138 5.8.1 Principles of Near-Field Optics 139 5.8.2 Optical Probes for Near-Field Optics 140 5.8.3 NSOM Operation 142 5.8.4 Near-Field Scanning Optical Spectroscopy 143 5.8.5 Near-Field Optical Chemical Sensors 145 5.8.6 Scanning Exciton Microscopy 146 5.8.7 Single-Molecule Detection by Near-Field Optics 147 6. STM Studies of Clean Surfaces 149 6.1 Metal Surfaces 149 6.1.1 Geometric Structures 150 6.1.2 Electronic Structures 152 6.1.3 Surface Diffusion 155 6.2 Elemental Semiconductor Surfaces 157 6.2.1 The Si(111) Surface 157 a) Si(lll)-7X7 157 b) Si(lll)-2xl 158 6.2.2 The Si(001) Surface 161 a) Geometric Structure 161 b) Electronic Structure 163 c) The 2xn Structure 165 6.2.3 Other Silicon-Surface Structures 166 6.2.4 The Ge Surfaces 167 a) Ge(lll) 167 b) Ge(001) 169 6.2.5 The GeSi(111) Surface 170 6.3 Compound Semiconductors and Layered Compounds 171 6.3.1 GaAs Surfaces 171 a) GaAs(llO). 171 b) GaAs(lOO) 172 c) GaAs(lll)andGaAs(Ill) 173 d) GaAs-AlGaAs 175 6.3.2 Layered Compounds 175 6.3.3 Charge-Density Waves in Compound Semiconductors. 177 a) CDW Phases of lt-tas 2 178 b) Charge-Density Wave Defects 181 6.3.4 High-T c Oxides 182 7. Surf ace Adsorbates and Surf ace Chemistry 185 7.1 Adsorption on Metal Surfaces 185 7.1.1 Cu(110)-O 186 7.1.2 Cu(100)-O 187 7.1.3 Dynamics 189 IX

x 7.1.4 Ag(110)-O 191 7.1.5 Ni(110)-HandNi(lll)-H 193 7.1.6 Sulfur Adsorption 194 7.1.7 Cu(lll)-S 196 7.1.8 Ni(lll)-S 198 7.1.9 Cu(110)-S 200 7.1.10 Ni(110)-S 203 7.1.11 Mo(001)-SandRe(0001)-S 206 7.1.12 Other Non-metal Adsorbates on Metals 207 7.1.13 Metallic Adsorbates 207 7.2 Adsorption on Semiconductor Surfaces 208 7.2.1 Ag/Si(lll) 209 7.2.2 Au/Si(lll) 210 7.2.3 Cu/Si(lll) 211 7.2.4 Group-Ill Metals on Si(111) 212 7.2.5 B/Si(lll) 212 7.2.6 Cl/Si(lll) 213 7.2.7 Bi on Si(100) and Si(l 11) Surfaces 214 7.2.8 Na/Si(lll) 215 7.2.9 Na/GaAs(110)andCs/GaAs(110) 217 7.2.10 Alkali Metals on Si(100)-2xl 220 7.3 Molecules, and Molecular Adsorbates 220 7.3.1 Molecular Crystals 220 7.3.2 Chemisorbed Aromatic Molecules in Ultrahigh Vacuum 222 7.3.3 Physisorbed Molecules in Ultrahigh Vacuum 223 7.3.4 Physisorbed Long-Chain Molecules 225 7.3.5 Fullerenes 227 a) C 60 on GaAs(llO) 227 b) C 60 on Si(100) 228 c) C 60 onsi(lll) 228 d) C 60 on MoS 2 (0001) 228 e) C 60 on Cu(lll) 229 f) C 60 onau(lll)andag(lll) 229 7.3.6 Langmuir-Blodgett Films 230 7.4 Observation of Clusters 230 7.4.1 Metal Clusters 231 7.4.2 Semiconductor Clusters 233 7.5 Nucleation and Growth 234 7.5.1 Epitaxial Growth of Metal Films 234 7.5.2 Growth of SionSi(OOl) 235 7.6 Chemical Reactions on Metals 238 7.6.1 Reaction on Ni(l 10) 238 7.6.2 Reaction on Cu(110) 240 7.6.3 Chemical Identity with STM 242

7.7 Chemical Reaction on Semiconductors 243 7.7.1 Reaction of NH 3 with Si(lll)-7x7 Surfaces 243 7.7.2 Reaction of NH 3 with B/Si( 111)- л/3 xv3 Surf ace... 246 7.7.3 Reaction of NH 3 with Clean Si(OOl) Surface 246 7.7.4 Si(lll)-7x7 Oxidation 247 7.7.5 Si(100)-2xl Oxidation 248 7.7.6 Reaction of H with Si(lll)-7x7 249 7.7.7 Reaction of Sb 4 with Si(100) 249 8. Biological Applications 251 8.1 Advantages and Problems 251 8.1.1 Substrates 252 8.1.2 Fixation of Samples onto Substrates 252 8.1.3 Flexibility of Biological Samples 253 8.1.4 Identification and Interpretation of STM Images 253 8.2 Preparation 253 8.2.1 Dispersion of Samples on Substrates 253 8.2.2 Fixation of Samples 255 a) Sample Coatings 255 b) Covalently Binding Samples with Strongly Absorbent Groups 255 c) Binding Samples to the Substrate Covalently 255 8.2.3 STM Imaging in Acqueous Solutions 257 8.2.4 Hopping Technique 257 8.2.5 STM Directed by an Optical Microscope 258 8.3 Nucleic Acids 258 8.3.1 DNA in Air and in Vacuum 259 8.3.2 DNA Studies Under Water with an Electrolyte 261 8.3.3 DNA-Protein Complex 263 8.3.4 DNA Bases 264 8.3.5 DNA Sequencing by Scanning-Probe Microscopes... 265 8.4 Proteins 267 8.4.1 Animo Acids and Peptides 268 8.4.2 Structural Proteins 270 8.4.3 Functional Proteins 271 8.5 Biological Membranes 272 8.6 Imaging Cells and Other Applications 273 9. Surface Modification 277 9.1 Overview 277 9.2 Direct Indentation with the Tunneling Tip 278 9.2.1 Modification of Metal Surfaces 279 9.2.2 Modification of Semiconductor Surfaces 283 9.3 Nanolithography on Resist Films 287 XI

9.4 Nanofabrication in Solution and in Gaseous Environments... 290 9.4.1 Nanofabrication in Solution 290 9.4.2 Nanofabrication in Gaseous Environments 292 9.5 Atomic-Scale Manipulation 293 9.5.1 Manipulation of Atoms 293 a) Xenon Atoms 293 b) Iron Atom 296 c) Silicon Atom 297 d) Sulfer Atoms 299 9.5.2 Manipulation of Molecules and Clusters 300 a) Carbon Monoxide 300 b) Antimony Molecules 301 c) Decaborane and Other Organic Molecules 302 d) H 2 0 Molecules 302 9.6 Fabrication with Other Scanning-Probe Microscopes 303 9.6.1 Machining Thin Films 303 9.6.2 Charge Storage 305 9.6.3 Magnetic Structures and Writing into an Interface... 306 9.7 The Future 307 References 309 Subject Index 327 XII