Progress of an accelerator mass spectrometry system on the Tsukuba 12UD Pelletron tandem accelerator

Similar documents
Accelerator Mass Spectroscopy

Refurbishment of the Electrostatic Accelerators of ithemba LABS

Search for live 182 Hf in deep sea sediments

Accelerator Physics, BAU, First Semester, (Saed Dababneh).

3.5. Accelerator Mass Spectroscopy -AMS -

Optimization of 10 Be and 26 Al detection with low-energy accelerator mass spectrometry

The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams

Ion-beam techniques. Ion beam. Electrostatic Accelerators. Van de Graaff accelerator Pelletron Tandem Van de Graaff

has long-lived been used radioisotopes to detect by counting the accelerated ions. beams has been solved by combining

Production of HCI with an electron beam ion trap

Direct-Current Accelerator

Accelerator Mass Spectrometry and Bayesian Data Analysis

The RI Beams from the Tokai Radioactive Ion Accelerator Complex (TRIAC)

Van de Graaff: Lifetime of 11 C

Fig. 1 : Voltage vs hours graph for the 15 UD Pelletron

accelerating opportunities

The scanning microbeam PIXE analysis facility at NIRS

C - AMS. Introduction Identification of 14 C. Remarks for users

SIMULATION STUDY FOR THE SEPARATION OF RARE ISOTOPES AT THE SEOUL NATIONAL UNIVERSITY AMS FACILITY

Screens for low current beams

FIRST RADIOCARBON MEASUREMENTS AT BINP AMS

ACCELERATOR MASS SPECTROMETRY AT THE LUND PELLETRON ACCELERATOR

Ultratrace analysis of radionuclides by AMS

EBSS: Hands-on Activity #8. Operation of an electromagnetic isotope separator (EMIS) Dan Stracener Jon Batchelder

DEVELOPMENT OF FFAG AT KYUSYU UNIVERSITY

New Tandetron Accelerator Laboratory at MTA Atomki, Debrecen: Multi-Purpose and Multi-User Facility

R JUERG BEER, HANS OESCHGER, and MICHEL ANDREE Physikalisches Institut, Universitat Bern, CH-3012 BERN, Switzerland

THE ROLE OF 36(1 AND 14C MEASUREMENTS IN AUSTRALIAN GROUNDWATER STUDIES. example approximating this requirement.

UTTAC ANNUAL REPORT TANDEM ACCELERATOR COMPLEX Research Facility Center for Science and Technology University of Tsukuba

What did you learn in the last lecture?

1.4 The Tools of the Trade!

ION BEAM OPTIC SIMULATIONS AT THE 1 MV TANDETRON TM FROM IFIN-HH BUCHAREST

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY

1.5. The Tools of the Trade!

Beam optics of the folded tandem ion accelerator at BARC

Accelerators. W. Udo Schröder, 2004

TAMIA, a Versatile Tool for Materials Analysis

Calibration of a 1.7 MV Pelletron Accelerator at the University of Florida. Ralph Kelly. Department of Physics, University of Florida

free electron plus He-like ion

ACCELERATOR MASS SPECTROMETRY; from tracing oceans to nuclear astrophysics. Philippe Collon, University of Notre Dame

Section 4 : Accelerators

Development of the UNILAC towards a Megawatt Beam Injector

Department of Radiation Protection, Nuclear Science Research Institute, Japan Atomic Energy Agency

corresponding l Nuclear Physics Laboratory and Quaternary Isotope Laboratory University of Washington, Seattle, Washington INTRODUCTION

7) Applications of Nuclear Radiation in Science and Technique (1) Analytical applications (Radiometric titration)

University of Groningen. The HVEE C-14 system at Groningen Gottdang, Andreas; Mous, Dirk J.W.; van der Plicht, Johannes. Published in: Radiocarbon

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

X = Z H + N n TBE. X = d 1 Z 2 + d 2 Z d 3 + d + d 4, where d i = f (Ci, A) 75 Se 75 Br. 75 Zn. 75 Ga. 75 Kr. 75 Ge 75 As

Current issues of radiation safety regulation for accelerator facilities in Japan

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Classifying Chemical Reactions

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017

Particle Accelerators. The Electrostatic Accelerators

RCNP cyclotron facility

J H SHEA*, T W CONLON, JAMES ASHER, and P M READ. in the dating of artifacts (Gove, 1978).

Chopping High-Intensity Ion Beams at FRANZ

IUAC Pelletron Accelerator

Particle physics experiments

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

From simulations to an operating cyclotron The story of the K130 cyclotron

ICPMS Doherty Lecture 1

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

AN ION SOURCE FOR THE HVEE 14C ISOTOPE RATIO MASS SPECTROMETER FOR BIOMEDICAL APPLICATIONS

In-Flight Fragment Separator and ISOL Cyclotron for RISP

SENSITIVITY OF THE ION BEAM FOCAL POSITION WITH RESPECT TO THE TERMINAL HIGH VOLTAGE RIPPLE IN AN FN-TANDEM PARTICLE ACCELERATOR

PRIME LAB: A DEDICATED AMS FACILITY AT PURDUE UNIVERSITY

Accelerator based neutron source for neutron capture therapy

Sample Analysis Design PART II

LNL IRRADIATION FACILITIES

UTTAC ANNUAL REPORT TANDEM ACCELERATOR COMPLEX Research Facility Center for Science and Technology University of Tsukuba

Seattle, Washington 98195

ICP-Mass Spectrometer

Energy response for high-energy neutrons of multi-functional electronic personal dosemeter

STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON

Alpha Particle: or Beta Particle: or Neutron: or n 0. Positron: Proton: or p + Gamma Ray:

Experimental Activities in China

Management of Nuclear Knowledge: Applications of Nuclear Science

Heavy ion AMS with a small accelerator

Historical developments. of particle acceleration

Jay Davis Lawrence Livermore National Laboratory

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL

The Groningen Cyclotron at Demokritos Athens

arxiv: v2 [physics.acc-ph] 21 Jun 2017

Bhas Bapat MOL-PH Seminar October Ion Matter Interactions and Applications

Design Note TRI-DN Low Energy Beam Transport Line for the CANREB Charge State Breeder

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

The heavy-ion magnetic spectrometer PRISMA

GSI Helmholtzzentrum für Schwerionenforschung

The heavy ion irradiation facility at KVI-CART

Development of Large Scale Optimization Tools for Beam Tracking Codes

Extraction from cyclotrons. P. Heikkinen

KEK isotope separation system for β-decay spectroscopy of r-process nuclei

DEVELOPMENT OF LARGE SCALE OPTIMIZATION TOOLS FOR BEAM TRACKING CODES*

for (n,f) of MAs 1. Introduction

Recent activity of Neutronics related IFMIF

Accelerator facilities - Ruđer Bošković Institute, Zagreb, Croatia

CYCLOTRON DEVELOPMENT PROGRAM AT JYVÄSKYLÄ

Transcription:

Progress of an accelerator mass spectrometry system on the Tsukuba 12UD Pelletron tandem accelerator -11th International Conference on Heavy Ion Accelerator Technology - Venezia (Italy) 8-12, June, 2009 Kimikazu SASA Tandem Accelerator Complex (UTTAC), University of Tsukuba, Japan Collaborators T. Takahashi, Y. Nagashima, Y. Tosaki, K. Sueki, Y. Yamato, N. Kinoshita, T. Amano, UTTAC, University of Tsukuba H. Matsumura, K. Bessho, RSC, KEK Y. Matsushi, MALT, The University of Tokyo

Outline of presentation Introduction - 12UD Pelletron tandem at the University of Tsukuba - AMS and facilities AMS system on the 12UD Pelletron tandem - Description of the Tsukuba AMS system - Recent progress - Performance of 26 Al, Cl and 129 I AMS Summary and future plans

Introduction - 12UD Pelletron tandem at the University of Tsukuba - AMS and facilities

UTTAC University of Tsukuba, Tandem Accelerator Complex Japan University of Tsukuba, Tsukuba science city 60 km from Tokyo in the northeast 2 accelerator facilities Proton Medical Research Center: PMRC Tandem Accelerator Complex: UTTAC 250 MeV Proton Synchrotron (2001) 12UD Pelletron Tandem Accelerator (1975) Proton Beam Radiotherapy 1MV Tandetron Accelerator (1987)

46.5 m 12UD Pelletron tandem accelerator (1975) Education Radiation University of Tsukuba, Tsukuba, Japan. Developments 2.5 % safety MODEL 2.5 %: Vertical Tandem 1.6 % Van de Graaff Hydrogen Terminal voltage range: 1-12 MV analysis Insulation 8.1 % Gas : SF 6 pressure: 0.6 MPa Accelerator Tank : Height: 17.9 m Atomic Diameter: AMS 4.8 m Physics Volume: 350 m 3 10.6 % 41.5 % Total weight: 120 ton Analyzing Magnet : ME/Z 2 =200 amu MeV Material science In the early 15.4 % stage Nuclear physics 3000 hours/yr Nuclear Physics 17.8 % Now AMS IBA Material science : Electrostatic steerer : Electrostatic quadrupole (triplet) : Quadrupole (doublet) : Magnetic steerer SW : Switching 1st target room AMS: 42 % SF6 SW SF6 AMS-IS Inflection Ion Source 120 - (25samples) 35 Cl-FC Stripper Object Analyzer Image 12UD Pelletron tandem accelerator 9th floor Ion source room 7th floor 5th floor 4th floor 2nd targer room 2nd stripper SW Accelerator room 8 -electrostatic deflector TOF 45 - AMS-beam line E-ΔE detector 41.6 m

Upgrade of the 12UD Pelletron tandem 1UD: 3 accelerating tubes 1MV 12UD at Tsukuba University, 1975 2009 1991 Divided Compressed resistor geometry system type tube (6 units) We replaced with electron the old trap corona electrodes needles of V-shaped with (45 ) the aperture. divided resister system. Max. 12.7 MV Variable terminal voltage (No shorting column) V t = 1 12 MV

Beam energy for the 12UD Pelletron Terminal voltage: 1-12 MV Ion Au Ta I Ag Mo Br Cu Ti Ca Cl Si Al F O C B He H,D He H,D O C B Au Ta I Ag Mo Br Cu Ti Ca Cl Si Al F 0 20 40 60 80 100 120 140 160 Beam energy (MeV)

Accelerator Mass Spectrometry Targets of AMS 10 Be (T 1/2 =1. 10 6 yr) 14 C (5730 yr) 26 Al (7.1 10 5 yr) Cl (3.0 10 5 yr) 129 I (1.57 10 7 yr) Accelerator High energy part Isobar, Isobaric Molecular suppression Magnetic analyzer Mass analysis Momentum analysis energy analysis Electrostatic analyzer Detectors 1 MeV/amu

AMS facilities 14 C-AMS 3MV Oxford, Groningen, Kiel, Arizona, NOSAMS, Nagoya, SNU, Multi Nuclides AMS LLNL, KIGAM 1MV 500 kv ETH, Georgia, UC-Irvine, Posnan, Peking, Paleo-labo, 10 Be, 14 C, 26 Al, Cl, 129 I, 5MV and higher ( originally for nuclear physics) LLNL(10MV), PRIME-Lab(8MV), ANO(9MV), ANU(14MV), ETH(6MV), Tokyo(5MV), Tsukuba(12MV), SWERC(5MV) 3MV VERA, LUND, JAEA-Mutsu,

AMS on the 12UD Pelletron tandem - Description of the Tsukuba AMS system - Recent progress - Performance of 26 Al, Cl and 129 I AMS

Tsukuba AMS system Progress of the Tsukuba AMS system 1993-1996 Trial AMS measurement for 14 C. 1996-1998 Development of AMS system 14 C-AMS AMS ion source (original) Mass separator beam line 1999- Development of 26 Al, Cl-AMS Pilot beam methods (Instead of GVM control) 2002- Development of 129 I-AMS 2007- Cl AMS 9 MV 10 MV (Improved beam line) Background: Cl/Cl < 1 10-15 Repetition accuracy:± 3 % 2009- Upgrade of the 12UD Pelletron (Resister system) GVM terminal control system

Tsukuba AMS system 120 15 kv EL V T = Sputtering Ion Source [Original] (25 samples) FC FC AMS-IS 100 kv 1st Stripper Terminal voltage Vt 11 MV FC Object Inflection ME/q 2 =30 12UD Pelletron tandem accelerator Slit current feedback controller GVM A pilot beam method is used to stabilize the terminal voltage. EL : Einzel lens : Electrostatic steerer : Electrostatic quadrupole (triplet) FC : Faraday cup GVM : Generating volt meter : Quadrupole (doublet) : Magnetic steerer SW : Switching TPS : Terminal potential stabilizer The terminal voltage is kept stable within 0.1 %. 26 Al, Cl, 129 I - AMS 12 MV max. Pilot beams (isobar) TPS 26 AlO - 26 MgO - Cl - 12 C 3-129 I- 97 MoO 2 - Analyzer ME/q 2 =200 Image SW 2nd stripper AMS-beam line 500 samples/year. 8 -electrostatic deflector 45 - TOF E-ΔE detector

Cl-AMS by the Tsukuba AMS system 120 15 kv EL Sputtering Ion Source [Original] (25 samples) AMS-IS 35 Cl - FC FC 100 kv 37 Cl - 1st Stripper Terminal voltage Vt 11 MV V T = 10 MV FC Object Inflection ME/q 2 =30 12UD Pelletron tandem accelerator Slit current feedback controller GVM TPS Cl-AMS Cl - 12 C 3 - EL : Einzel lens : Electrostatic steerer : Electrostatic quadrupole (triplet) FC : Faraday cup GVM : Generating volt meter : Quadrupole (doublet) : Magnetic steerer SW : Switching TPS : Terminal potential stabilizer Target material AgCl + C 60 Cl ~ 20 μa V T Pilot beam 10 MV 12 C 3 Detection ion Cl 14+ Particle energy Detection range Back-ground 100 MeV Cl/Cl = 10 10 ~ 10 14 Cl/Cl < 10 15 Repetition accuracy ± 3 % ( Cl/Cl ~ 10 12 ) Analyzer ME/q 2 =200 Image Cl 9+ :100 MeV 12 C 3+ : 33.3 MeV SW 2nd stripper 8 -electrostatic deflector AMS-beam line Cl 14+ 45 - TOF E-ΔE detector

AMS Cs sputtering ion source 120 15 kv EL Sputtering Ion Source [Original] (25 samples) FC FC AMS-IS 100 kv 1st Stripper Terminal voltage Vt 11 MV FC Inflection ME/q 2 =30 12UD Pelletron tandem accelerator Slit current feedback controller GVM Object TPS EL : Einzel lens : Electrostatic steerer : Electrostatic quadrupole (triplet) FC : Faraday cup GVM : Generating volt meter : Quadrupole (doublet) : Magnetic steerer SW : Switching TPS : Terminal potential stabilizer Original 25-sample changer Analyzer ME/q 2 =200 Image SW 2nd stripper AMS-beam line 8 -electrostatic deflector 45 - TOF E-ΔE detector

AMS Cs sputtering ion source 120 15 kv EL Sputtering Ion Source [Original] (25 samples) FC FC AMS-IS 100 kv FC Inflection ME/q 2 =30 Automatic sample changer Sputtering ion source Slit & 120 1st Stripper Terminal voltage Vt 11 MV 12UD Pelletron tandem accelerator Slit current feedback controller GVM 100 kv Offset FC Object TPS EL : Einzel lens : Electrostatic steerer : Electrostatic quadrupole (triplet) FC : Faraday cup GVM : Generating volt meter : Quadrupole (doublet) : Magnetic steerer SW : Switching TPS : Terminal potential stabilizer Analyzer ME/q 2 =200 Image SW 2nd stripper AMS-beam line 8 -electrostatic deflector 45 - TOF E-ΔE detector

AMS Cs sputtering ion source 120 15 kv EL Sputtering Ion Source [Original] (25 samples) FC FC AMS-IS 100 kv 1st Stripper Terminal voltage Vt 11 MV FC Object Inflection ME/q 2 =30 12UD Pelletron tandem accelerator Slit current feedback controller GVM TPS Cl - 12 C 3 - EL : Einzel lens : Electrostatic steerer : Electrostatic quadrupole (triplet) FC : Faraday cup GVM : Generating volt meter : Quadrupole (doublet) : Magnetic steerer SW : Switching TPS : Terminal potential stabilizer 35 Cl - 37 Cl - Analyzer ME/q 2 =200 Image SW 2nd stripper AMS-beam line 8 -electrostatic deflector 45 - TOF E-ΔE detector

AMS Cs sputtering ion source 120 15 kv EL Sputtering Ion Source [Original] (25 samples) FC FC AMS-IS 100 kv 1st Stripper Terminal voltage Vt 11 MV FC Inflection ME/q 2 =30 12UD Pelletron tandem accelerator Slit current feedback controller GVM Object TPS EL : Einzel lens : Electrostatic steerer : Electrostatic quadrupole (triplet) FC : Faraday cup GVM : Generating volt meter : Quadrupole (doublet) : Magnetic steerer SW : Switching TPS : Terminal potential stabilizer Analyzer ME/q 2 =200 Image SW 2nd stripper AMS-beam line 8 -electrostatic deflector 45 - TOF E-ΔE detector

Upgrade of LEBT for 12UD Pelletron tandem accelerator Ion Source 120 - (25samples) 35 Cl-FC Inflection AMS-IS Einzel lens was replaced with electrostatic quadrupole (triplet). 13 Steerer 273 580 Object point of the Inflection 676 Electrostatic quadrupole (triplet) 12UD Pelletron tandem accelerator Steerer Stripper : Electrostatic steerer : Electrostatic quadrupole (triplet) : Quadrupole (doublet) : Magnetic steerer SW : Switching Beam transport Injection energy Cl - : 103 kv H - : 120 kv Terminal voltage: 10 MV 2255 654 273 580 676 Electrostatic quadrupole (triplet) Object Analyzer Image 10 m 2nd stripper SW AMS-beam line TOF 8 -electrostatic deflector 45 - E-ΔE detector 1977 1228 95 #1-1 tube

Tsukuba 12UD first unit (2009) Lower resistance at the entrance. Adjustment for the focusing effect Ion beam First unit Column 18 gap 0.37 G 1/2 gradient 4/6 gap short 3/6 gap short gap full live stringer stringer 0.37 G 0.55 G0.55 G 1.1 G 1.1 G 1.1 G 1/3 gradient

Terminal section (Charge exchange) Terminal section was modified to the large aperture canal (φ20) in 2004. Ion Source 120 - (25samples) 35 Cl-FC Inflection AMS-IS 12UD Pelletron tandem accelerator Stripper Negative Positive ions Carbon stripper : Electrostatic steerer : Electrostatic quadrupole (triplet) : Quadrupole (doublet) : Magnetic steerer SW : Switching 10 m 2 units Object Analyzer Image 2nd stripper SW AMS-beam line TOF 8 -electrostatic deflector 45 - E-ΔE detector

Terminal section (Charge exchange) Terminal section was modified to the large aperture canal (φ20) in 2004. Ion Source 120 - (25samples) 35 Cl-FC Inflection AMS-IS 12UD Pelletron tandem accelerator Stripper Negative Positive ions 2 units Object Analyzer Image : Electrostatic steerer : Electrostatic quadrupole (triplet) : Quadrupole (doublet) : Magnetic steerer SW : Switching Foil unit A (115 s) Carbon stripper Foil unit 10 Bm (115 s) Focal point 2nd stripper SW AMS-beam line TOF 8 -electrostatic deflector 45 - E-ΔE detector

Terminal section (Charge exchange) Terminal section was modified to the large aperture canal (φ20) in 2004. Ion Source 120 - (25samples) 35 Cl-FC Inflection AMS-IS φ4 12UD Pelletron tandem accelerator φ6 φ8 φ12 Carbon for AMS: 5 μg/cm 2 Stripper Object Analyzer Image Negative Positive ions Carbon stripper : Electrostatic steerer : Electrostatic quadrupole (triplet) : Quadrupole (doublet) : Magnetic steerer SW : Switching Foil unit A (115 s) Foil unit 10 Bm (115 s) Focal point 2nd stripper SW AMS-beam line TOF 8 -electrostatic deflector 45 - E-ΔE detector

Terminal section (Charge exchange) Terminal section was modified to the large aperture canal (φ20) in 2004. φ16 for AMS φ4 Ion Source 120 - (25samples) 35 Cl-FC Inflection AMS-IS 12UD Pelletron tandem accelerator φ6 φ8 φ12 Carbon for AMS: 5 μg/cm 2 Stripper Object Analyzer Image Negative Positive ions Carbon stripper : Electrostatic steerer : Electrostatic quadrupole (triplet) : Quadrupole (doublet) : Magnetic steerer SW : Switching Foil unit A (115 s) Foil unit 10 Bm (115 s) Focal point 2nd stripper SW AMS-beam line TOF 8 -electrostatic deflector 45 - E-ΔE detector

Beam transport of the 12UD Pelletron 2009 15 mm Object point Acceptrance 5 mm mrad Electrostatic Q-triplet LEBT Cl - Injection energy: 103 kv V T :10 MV 12UD accelerator tubes Terminal Carbon stripper Magnification: 1.5 times on the Terminal stripper. Beam spot on the stripper : φ 6 mm

Mass separator beam line 2 nd stripper Switching 8 electrostatic deflector 45 TOF Gas ΔE - E detector

Gas E-ΔE detector Iso-butane 670 Pa Cl S 100 MeV Cl in the gas detector.

Cl-AMS (2-dimensional spectrum) 500 (a) Cl 14+ (1003 counts) 500 (b) ΔE in channels Counts 400 300 10 3 10 2 10 Cl standard Cl/Cl=1.60 10 12 300 sec 35 Cl current: 1929 μc (6.5 μa) 300 400 E res in channels Cl S 14+ S ΔE in channels Counts 400 300 10 4 10 3 10 2 10 Halite sample Cl/Cl < 1 10 15 1800 sec 35 Cl current:11492 μc (6.5 μa) 300 400 E res in channels S 14+ Cl/Cl Background: 1 10-15 300 400 E res in channels 300 400 E res in channels Standard sample Blank sample Cl/Cl=1.60 10-12

26 Al-AMS (2-dimensional spectrum) ΔE (channel) 400 200 a) b) 26 Mg 11+ 26 Mg 12+ 26 Al 13+ (1054 counts) Standard sample 26 Al/ 27 Al = 7.44 10 11 5-minute measurement E-ΔE (channel) ΔE (channel) 400 200 26 Al 13+ Blank sample 80-minute measurement 200 400 200 400 E-ΔE (channel) -Full stripping technique -Pilot beam: 26 MgO - - Beam current of AlO - from Al 2 O 3 sample : 1.5 μa - 26 Al is very clearly separated from 26 Mg. - Background of the 26 Al-AMS: < 1 10-15.

Performance of the Tsukuba AMS system A pilot beam method is used to stabilize the terminal voltage. Target material V T Injection ion 26 Al-AMS Pilot beam Cl-AMS Detection ion Particle energy Al 2 O 3 + 26 MgO 2 +Ag 10.2 MV 26 AlO - 26 MgO - 26 Al 13+ 78 MeV < 1 10-15 Target material V T Injection ion AgCl+C 60 10 MV Pilot beam 129 I-AMS Detection ion Cl - 12 C 3 - Cl 14+ Particle energy Background Background 100 MeV <1 10-15 Target material V T Injection ion Pilot beam Detection ion Particle energy Background AgI+MoO 2 +Nb 9.7 MV 129 I - 97 MoO 2-129 I 26+ 126 MeV < 1 10-13

Applications by the Tsukuba AMS system Mainly for earth and environmental sciences. Nuclear safety research Atomic bomb, neutron fluence Soil sediment Rock meteorite Groundwater, rain, ice Biological sample Limestone Rain water Human hair Hiroshima A-bomb sample Soil Meteorite Ice core

Summary and future plans 12UD Pelletron tandem at the University of Tsukuba We have upgraded the 12UD Pelletron tandem. LEBT, divided resister system, terminal stripper. The beam time for AMS research has increased to about 42% of the total operation time. Tsukuba AMS system We are able to measure long-lived radioisotopes of 26 Al, Cl and 129 I by employing a molecular pilot beam method that stabilize the terminal voltage with 0.1% accuracy. Main research fields are earth and environmental sciences. Future plans GVM control system New injection beam line (MC-SNICS)

Thank you for your kind attention.

Appendix

26 Al-AMS 120 mag. ΔE-E detector 45 mag. 26 Al 13+ FC AMS ion source 26 MgO - 26 AlO - 27 AlO - deflector(8 ) 2 nd stripper (40μg/cm 2 ) V t =10.2MV 26 Mg 7+ Slit current feedback Inflection mag. 1 st Stripper 26 Mg n+ 26 Al m+ - Full stripping technique: 26 Al 13+ / 27 AlO - [counts/μc] - Pilot beam: 26 MgO - - Beam current of AlO - from Al 2 O 3 sample : 1.5μA The beam transmission of full stripped Al 13+ : 10%. 26 Mg n + (m 12) 26 Al m + (n 13) Switching mag. 26 Mg 7+ 26 Al 7+ (77.7 MeV) Analyzing mag.

AMS facilities in JAPAN 10 AMS facilities (12 accelerators) Kyushu University Tandem (10MV): 14 C JAEA Tono Tandem (5MV): 14 C Kyoto University Tandem (8MV): 14 C Paleo Labo Co., Ltd. Tandem (500kV): 14 C JAEA Mutsu Tandetron (3MV): 14 C, 129 I Institute of Acceleratory Analysis Ltd. Tandem (3MV): 14 C Tandem (500kV): 14 C NI-TERRA Tandem (5MV): 14 C University of Tsukuba Tandem (12MV): 26 Al, Cl, 129 I Nagoya University Tandetron (3MV): 14 C Tandetron (2.5MV): 14 C MALT, The University of Tokyo Tandem (5MV): 10 Be, 14 C, 26 Al, Cl, 129 I

AMS data acquisition and control system

Replicated Cl standard measurements Standard sample: Cl/ 35 Cl = 5.90 10 11 It takes 3 minutes for each measurement. The standard deviation of the fluctuation of the Cl/ 35 Cl ratio is kept within ± 3 %.

Cl production e n γ e Primary Cosmic Ray γ π ± μ ± π ± n μ ± n π ± π ± n n n μ ± π ± n n Cl (T 1/2 =301 kyr): β-decay Ar (98 %) Natural-Cosmic rays 40 Ar(p, nα) Cl Ar (n, p) Cl --- 20 atoms/m 2 /s Neutron capture (U, Th) 35 Cl (n, γ) Cl Human activities 35 Cl (n, γ) Cl (44 barn) Nuclear explosion tests in the sea (1952-1958) Atomic power plant, Nuclear fuel cycle facilities, etc.

Cl-AMS ΔE Cl 32 counts S Cl / 35 Cl (counts/μc) 0.7 0.6 0.5 0.4 0.3 0.2 Standard sample ( Cl/ 35 Cl =6.5 10-12 ) No. 18 No. 20 No. 18 Blank sample: Cl / 35 Cl=2.4 10-14 E-ΔE 5 minutes measurement 0.1 0 10 20 30 40 50 60 70 80 90 100 Run No. Reproduction in replicated measurements Cl-AMS (Vt:10MV) Beam energy: Cl 14+ 100MeV Background: Cl/Cl=~1 10-15 Detection range: Cl/Cl=10-10 ~10-14 Accuracy: ± 3 % ( Cl/Cl~10-12 )

Charge state distribution of Cl ions Charge state distribution of 35 Cl and 37 Cl ions after the passage through a carbon. [by Dr. Shima et al.] 1st stripper 9MV 10MV Charge fraction 1 0.1 0.01 0.001 2nd stripper Charge fraction F(q) of 90MeV 35 Cl 9+ emerging from a carbon 8 9 10 11 12 13 14 15 16 17 E [MeV] Charge fraction F(q) of 35 Cl 9+ increased 1.5 times from 20% to 30%. 0.0001 0 10 20 30 40 50 60 C- [μg/cm 2 ] The optimum thickness of 2 nd stripper : 12-15μg/cm 2 [F(14+)]

Sample preparation Sample (10 20 ml) 30% H 2 O 2 (1 ml) 13 M HNO 3 (1 ml) 0.3 M AgNO 3 (1 ml) Centrifugation (2500 rpm, 10 min) Supernatant Precipitate (AgCl) Sulfur Reduction (2 times) 3 M NH 4 OH (2 ml) sat. Ba(NO 3 ) 2 (3 ml) Filtration (Filter Paper) Sample: AgCl 1 5mg Filtrate ([Ag(NH 3 ) 2 ] + Cl ) 13 M HNO 3 (0.5 ml) Centrifugation (2000 rpm, 15 min) Precipitate (BaSO 4 ) Supernatant Precipitate (AgCl) Washing (with 0.01 M HNO 3, 2 times) Washing (with 99.5% C 2 H 5 OH) Drying (130 C, 3 h) A benzene saturated solution of fullerene (C 60 ) for 12 C 3- pilot beam. [7.6 μl / AgCl: 1 mg]