φ (x,y,z) in the direction of a is given by

Similar documents
PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

= y and Normed Linear Spaces

Chapter 3 Vector Integral Calculus

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

Chapter Fifiteen. Surfaces Revisited

χ be any function of X and Y then

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t

Remember: When an object falls due to gravity its potential energy decreases.

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

The Divergence Theorem

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

Professor Wei Zhu. 1. Sampling from the Normal Population

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

Fairing of Parametric Quintic Splines

SYSTEMS OF NON-LINEAR EQUATIONS. Introduction Graphical Methods Close Methods Open Methods Polynomial Roots System of Multivariable Equations

XII. Addition of many identical spins

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

Exponential Generating Functions - J. T. Butler

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

Green s Identities and Green s Functions

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

VIII Dynamics of Systems of Particles

FREE Download Study Package from website: &

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

Review: Electrostatics and Magnetostatics

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

2012 GCE A Level H2 Maths Solution Paper Let x,

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Multivector Functions

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

MOLECULAR VIBRATIONS

16 Homework lecture 16

The formulae in this booklet have been arranged according to the unit in which they are first

PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13

Counting Functions and Subsets

ON THE STRUCTURE OF THE EULER MAPPING

Consider two masses m 1 at x = x 1 and m 2 at x 2.

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

The formulae in this booklet have been arranged according to the unit in which they are first

Rigid Bodies: Equivalent Systems of Forces

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

Harmonic Curvatures in Lorentzian Space

Traditional Approaches to Analyzing Mechanical Tolerance Stacks

Chapter I Vector Analysis

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

Advanced Higher Formula List

Lecture 6: October 16, 2017

Vectors, Vector Calculus, and Coordinate Systems

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Impact of Polarimetric Dimensionality of Forest Parameter Estimation by Means of Polarimetric SAR interferometry

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS

Force and Work: Reminder

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

MATH /19: problems for supervision in week 08 SOLUTIONS

ENGI 4430 Numerical Integration Page 5-01

PARAMETRIC STUDY ON PARETO, NASH MIN- MAX DIFFERENTIAL GAME

Physics 2212 GH Quiz #2 Solutions Spring 2016

Chapter 2: Descriptive Statistics

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

Lecture 24: Observability and Constructibility

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

CHAPTER 25 ELECTRIC POTENTIAL

Math 209 Assignment 9 Solutions

Conjugate Gradient (CG) Method

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

Phys 332 Electricity & Magnetism Day 13. This Time Using Multi-Pole Expansion some more; especially for continuous charge distributions.

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

The Mathematical Appendix

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Suppose the medium is not homogeneous (gravity waves impinging on a beach,

CS475 Parallel Programming

1969 AP Calculus BC: Section I

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29,

Chapter 10 Sample Exam

B da = 0. Q E da = ε. E da = E dv

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

Electromagnetic Theory 1

Special Instructions / Useful Data

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

Lecture 8 - Gauss s Law

Born-Oppenheimer Approximation. Kaito Takahashi

KEPLER S LAWS OF PLANETARY MOTION

Transcription:

UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o chae o the decto. It s ve b the compoet o ad that decto. The dectoal devatve o a scala pot ucto (,,) the decto o a s ve b.a. a Dectoal devatve o s mamum the decto o Hece the mamum dectoal devatve s oad. Ut omal vecto to the suace I (,, ) be a scala ucto, the (,, ) c epesets A suace ad the ut omal vecto to the suace s ve b Equato o the taet plae ad omal to the suace Suppose a s the posto vecto o the pot,, ) O the suace (,, ) c. I ( s the posto vecto o a pot (,,) o the taet plae to the suace at a, the the equato o the taet plae to the suace at a ve pot a o t s ve b a. ad I s the posto vecto o a pot o the omal to the suace at the pot a o t. The vecto equato o the omal at a ve pot a o the suace s a ad The Catesa om o the omal at,, ) o the suace ( (,,) c s o Dveece o a vecto I (,, ) s a cotuousl deetable vecto pot ucto a ve eo o space, the the dveeces o s deed b. dv

I,the ).( dv.e., dv Soleodal Vecto A vecto s sad to be soleodal dv (e). Cul o vecto ucto I ),, ( s a deetable vecto pot ucto deed at each pot (,, ), the the cul o s deed b cul I,the ) ( cul cul Cul s also sad to be otato Iotatoal Vecto A vecto s called otatoal Cul (e) Scala Potetal I s a otatoal vecto, the thee ests a scala ucto Such that. Such a scala ucto s called scala potetal o Popetes o Gadet. I ad ae two scala pot ucto that ( ) ± ± (o) ( ) ad ad ad ± ± Soluto: ( ) ( ) ± ±

( ) ( ) ( ) ± ± ± ± ± ± ± ±. I ad ae two scala pot uctos the ( ) (o) ad ad ad ) ( Soluto: ( ) ( ) ( ) ( ) ( ). I ad ae two scala pot ucto the whee Soluto: [ ]. I such that,pove that Soluto:

5. d a ut omal to the suace at (,-, ) Soluto: Gve that ) ( ( ) ( ) ( ) At (,-, ) ( ) ) ( () 6 8 6 6 6 6 Ut omal to the ve suace at (,-,) 6 6. d the dectoal devatve o at (,,) the decto o Soluto: Gve ) ( ( ) ( ) ( ) 8 At (,, ) 8 6 5 Gve: a 6 a

a a D D.. 6. 8 6 5 [ ] [ ] 86 6 8 6 8 6 7. d the ale betwee the suace 5 ad 5 at (,,) Soluto: Let ad,,,, ) ( At (o,,) Cos 6 6.. θ 6 cos θ cos θ cos 8. d the ale betwee the suaces lo ad at the pot (,,) Soluto: let lo ad,, lo,, ) lo (

Cos 6 5. θ 6 5 cos θ 9. d ( ) Soluto: ( ) ( ). ( ) ( ) ( ) ( ) Sce u dv u u. ( ) ( )... ( ) ( ). ( )( ). ( )( ) ( ) [ ] ( )

. I ad.pove that s soleodal ad s otatoal o all vectos o. Soluto: dv ( ) ( ) ( ) () Now Deetat patall w..to, Smlal, Now ( ) ( ).. ( ) ( ) om () we have ( ) dv ( ) The vecto s soleodal dv ( ) s soleodal ol - Now cul ( ) ( )

( ) Cul ( ) Cul ( ) o all values o Hece s otatoal o all values o.. Pove that ( ) ( ) s cos s otatoal ad d ts scala potetal Soluto: s cos cul [ ] [ ] [ ] cos cos s otatoal. To d such that ad ( ) ( ) s cos Iteat the equato patall w..to,, espectvel ), s ( ), ( s ), (, s C s scala potetal. Pove that ).( ).( B cul A A cul B B A dv Poo : ).( B A B A dv B A B A B A B A A B

B A. A. B cul B. A cula. B.Pove that Soluto: culcul cul cul B us a b c a. c b a. b c.. ( ). VECTOR INTEGRATION Le, suace ad Volume Iteals Poblems based o le Iteal Eample : I ( 6) (,,) alo the cuve Evaluate. d om (,,) to t, t, t Soluto: The ed pots ae (,, ) ad (,, ) These pots coespod to t ad t d dt, d t, d t. d ( 6) d d d C C 5 7 ( t 6t ) dt t ( tdt) t ( t ) dt 6 9 ( t 8t 6t ) 9 dt t t 6t 7 ( ) [( 6) ] 5 C Eample : Show that s a cosevatve vecto eld.

Soluto: I s cosevatve the s a cosevatve vecto eld. Now Suace Iteals Deto: Cosde a suace S. Let deote the ut outwad omal to the suace S. Let R be the poecto o the suace o the XY plae. Let be a vecto valued deed some eo cota the suace S. The the suace teal o s deed to be Eample ; Evaluate S S.. ds d. d R.. ds whee ad S s the suace o the clde cluded the st octat betwee the plaes ad. Soluto: Gve The ut omal to the suace..

() () () INTEGRAL THEOREMS Gauss s dveece theoem Stoe s theoem Gee s theoem the plae Gee s Theoem Statemet: I M(,) ad N(,) ae cotuous uctos wth cotuous patal devatves a eo R o the plae bouded b a smple closed cuve C, the N M Md d dd, whee C s the cuve descbed the c R postve decto.

Ve Gee s theoem a plae o the teal ( ) d d tae aoud the ccle Soluto: Gee s theoem ves N M Md Nd dd c R Cosde ( ) d d c M N M N, N M dd R dd dd ( ) R R [Aea o the ccle] π. π. π () Now Md Nd We ow that the paametc equato o the ccle cosθ sθ d sθdθ, d cosθdθ Md Nd ( ) d d cosθ sθ sθdθ cosθ cosθ d ( )( ) ( ) θ cosθ sθ 8s θ cos θdθ Whee θ vaous om to π π ( cosθ sθ s θ ) Md Nd dθ C π cos θ s θ d θ π ( s θ 6 cos θ ) d θ cos θ s θ 6θ π π.() om () ad () π c

N M Md Nd dd c R Hece Gee s Theoem s veed. Eample Us Gee s theoems d the aea o a ccle o adus. Soluto: B Gee s theoem we ow that Aea eclosed b C d d The paametc equato o a ccle o adus s Whee θ π π C Aea o the ccle cosθ ( cosθ ) sθ ( sθ ) dθ Eample : π ( cos θ s θ ) dθ π dθ θ π π [ ] Evaluate [( ) d cosd] c cosθ, sθ s whee c s the tale wth π vetces (,),(,) ad ( π,) Soluto: Equato o OB s π π

N M B Gee s theoem Md Nd dd c R M Hee M s, N N cos, s [( s ) d cosd] ( s )dd C I the eo R, vaes om C ( s ) d cosd ( s ) R π π [ cos ] π π to ad vaes om to dd π π d π π π cos d π π π s π π π π π π Eample Ve Gee s theoem the plae o 8 d 6d whee C s the bouda o the eo deed ( ) ( ) C b X,, Soluto: We have to pove that

c N M Md Nd dd R M 8, N 6 M N 6, 6 B Gee s theoem the plae N M Md Nd dd c R ( ) dd ( ) 5 d ( ) 5 Cosde Md Nd c OA Alo OA,, vaes om to OA AB Md Nd BO 5 d [ ] Alo AB, - d d ad vaes om to. AB STOKE S THEOREM Md Nd [ 8( ) ( ) 6( ) ]d ( ) ( ) 8 8 8

I S s a ope suace bouded b a smple closed cuve C ad a vecto ucto s cotuous ad has cotuous patal devatves S ad o C, the cul. ds. d whee s the ut vecto omal to the c suace (e) The suace teal o the omal compoet o to the teal o the taetal compoet o tae aoud C. Eample Ve Stoe s theoem o ( ) cul s equal whee S s the uppe hal o the sphee ad C s the ccula bouda o plae. Soluto: B Stoe s theoem Hee ( ) c cul. d cul. ds [ ] ( ) ( ) s sce C s the ccula bouda o plae S aea o the ccle cul. ds S dd π ( ) π.() ON, c O C, cosθ, sθ d s θdθ, d cosθdθ θ vaes om to π. d cul. ds s

c. d π om () ad () Eample ( cosθ sθ )( sθ ) dθ c π π ( cosθ sθ ) d θ π s θdθ π ( s θ ) d θ π cos θ dθ π cos θ s θ θ π π (). d cul. ds Hece stoe s theoem s veed s Ve stoe s theoem o ( ) ( ) whee s s the suace o the cube,,,, ad above the plae. Soluto: B Stoe s theoem c. d cul. ds Gve ( ) ( ) s cul [ ] [ ] [ ] [ ]

Hece Stoe s theoem s veed. Eample : Ve Stoe s theoem o whee S s the uppe hal suace o the sphee ad C s ts bouda. Soluto: B stoe s theoem

c. d cul. ds s Gauss Dveece theoem Statemet: The suace teal o the omal compoet o a vecto ucto ove a closed suace S eclos volume V s equal to the volume teal o the dveece o tae thouhout the volume V, S. ds. dv V Evaluate dd dd dd ove the suace bouded b, h, a Soluto:

π π cos θd θ 6 π S a. ds