Exp t 83 Synthesis of Benzyl Acetate from Acetic Anhydride

Similar documents
The Fragrance of Rum, Isobutyl Propionate

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19

NaBr, H2SO4 CH3CH2CH2CH2Br + NaHSO4 + H2O. 1-Bromobutane bp C den MW n 1.439

Experiment 12: Grignard Synthesis of Triphenylmethanol

The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION

Exp't 141. Exp't 141

Experiment 11: Dehydration of Cyclohexanol

R C OR' H 2 O carboxylic acid alcohol ester water side product

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

In some cases, even an individual ester smells similar to a natural aroma. Some examples include:

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

Exp t 144 Synthesis of N,N-Diethyl-m-Toluamide: The Insect Repellent "OFF"

Expt 7: Preparation of Isobutyl Propionate (or Isobutyl Propanoate)

Synthesis of Benzoic Acid

3. Two unknown samples are found to have the same R f value under identical TLC conditions. Are they the same compound? Explain.

CH 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, NUCLEOPHILIC SUBSTITUTION REACTIONS (S N 1 and S N 2)

Chem 102b Experiment 14: Part II Revised Preparation of Esters

Preparation of an Ester Acetylsalicylic Acid (Aspirin)

Sodium Borohydride Reduction of Benzoin

Wavenumbers. Infrared spectrum of 6-ethoxycarbonyl-3,5-diphenyl-2-cyclohexenone, KBr. Enamine Reactions: 2-Acetylcyclohexanone

36B-BioOrganic Modifications for Technique Experiments. Technique of Thin-Layer Chromatography

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol

REACTIONS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase.

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43

CHMA2000 EXPT 7: The Physical and Chemical Properties of Alcohols

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol

Expt 10: Friedel-Crafts Alkylation of p-xylene

P1. SEPARATION OF ORGANIC COMPOUNDS MIXTURE

Chemistry 283g Experiment 4

2. Synthesis of Aspirin

Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis

5.37 Introduction to Organic Synthesis Laboratory

12AL Experiment 11 (3 days): Nucleophilic Substitution Reactions

PREPARATIVE TASK GRAND PRIX CHIMIQUE PETNICA SCIENCE CENTER, VALJEVO, SERBIA 9 TH -14 TH OCTOBER 2017

Chemistry 262 Laboratory Experiment 3: Derivatization of the Grignard Product Formation of Ethyl and Propyl Benzoate 2/01/18, 2/08/18

GRIGNARD REACTION Synthesis of Benzoic Acid

Experiment # 13 PREPARATION OF ASPIRIN

University of Wisconsin Chemistry 116 Preparation and Characterization of Aspirin and Some Flavoring Esters *

2 (CH 3 CH 2 ) 2 NH diethylamine

Experiment 8: Chlorination of 1-Chlorobutane

Review Questions for the Chem 2315 Final Exam

Experiment 1: Extraction and Thin Layer Chromatography

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography

Exp t 125. Oxidation of Borneol to Camphor. Reduction. Camphor. Borneol. Isoborneol

Experiment 3: Preparation of Lidocaine

Exp t 111 Structure Determination of a Natural Product

REACTIONS: Reduction of a ketone, acetylation of an alcohol, and a kinetic resolution using a lipase.

Experiment 12 Grignard Reaction; Preparation of Triphenylcarbinol

The Grignard Reaction: Synthesis of 4,4-Diphenyl-3-buten-2-one

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

Experiment 8 Synthesis of Aspirin

Expt 9: The Aldol Condensation

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

Nitration of Bromobenzene by Electrophilic Aromatic Substitution

Experiment 1: Preparation of Vanillyl Alcohol

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene

Thin Layer Chromatography

Dehydration of Alcohols-Gas Chromatography

Minneapolis Community and Technical College. Separation of Components of a Mixture

Experiment #2: Piperine - Synthesis and Isolation of a Natural Product

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I

Green Chemistry in the Undergraduate Organic Laboratory: Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay

LAB 17: SYNTHESIS OF BANANA OIL: REACTIONS OF ALCOHOLS: FISCHER ESTERIFICATION

EXPERIMENT 7 - Distillation Separation of a Mixture

Chlorobenzene from Aniline via the Sandmeyer Reaction. August 21, By ParadoxChem126. Introduction

As you can see from the reactions below for the reduction of camphor, there are two possible products, borneol and isoborneol.

Introductory Remarks:

Expt 6: Preparation of Lidocaine, Part 1

Free Radical Chlorination

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

METHOD 3520C CONTINUOUS LIQUID-LIQUID EXTRACTION

Cl 2(g) + NaCl + H 2 O. light. 2Cl. Once formed, the chlorine radical can react with the heptane as shown below: + Cl

Title of experiment and short description of the purpose of the experiment.

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET)

Chapter 5. Chemical Extraction

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

Synthesis of Frambinone by Aldol Condensation and Catalytic Hydrogenation

Experiment 2 - Using Physical Properties to Identify an Unknown Liquid

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Review Experiments Formation of Polymers Reduction of Vanillin

+ X base) CH 2 X. R enolate anion

Acid-Base Extraction

Chemistry 283g- Experiment 4

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

Honors Cup Synthetic Proposal

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

METHOD 3510B SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION

Limiting Reagent Synthesis of Aspirin Thomas M. Moffett Jr., SUNY Plattsburgh, 2007.

Oxidation of Alcohols: Oxidation of Borneol to Camphor

Supporting Information for

Nucleophilic Addition to Carbonyl: Grignard Reaction with a Ketone

Transcription:

Exp t 83 Synthesis of Benzyl Acetate from Acetic Anhydride from K. L. Williamson, Macroscale and Microscale rganic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston p385; revised Prelab Exercise: 10/14/00 Give the detailed mechanism for the synthesis of isobutyl formate by Fischer esterification. Introduction: The ester group is an important functional group that can be synthesized in a number of different ways. The low-molecular-weight esters have very pleasant odors and indeed are the major components of the flavor and odor aspects of a number of fruits. Although the natural flavor may contain nearly a hundred different compounds, single esters approximate the natural odors and are often used in the food industry for artificial flavors and fragrances. Esters can be prepared by the reaction of a carboxylic acid with an alcohol in the presence of a catalyst such as concentrated sulfuric acid, hydrogen chloride, p-toluenesulfonic acid, or the acid form of an ion exchange resin:

H 3 H H H H 3 H 2 This Fischer esterification reaction reaches equilibrium after a few hours of refluxing. The position of the equilibrium can be shifted by adding more of the acid or of the alcohol, depending on cost or availability. The mechanism of the reaction involves initial protonation of the carboxyl group, attack by the nucleophilic hydroxyl, a proton transfer, and loss of water followed by loss of the catalyzing proton to give the ester. Because each of these steps is completely reversible, this process is also, in reverse, the mechanism for the hydrolysis of an ester: ther methods are available for the synthesis of esters, most of them more expensive but readily carried out on a small scale. For example alcohols react with acid anhydrides to form esters and this is the method used in this experiment: H 3 H 3 H 2 H3H2H H3H Ethanol Acetic anhydride Ethyl acetate Acetic acid Acid chlorides form esters by reaction with alcohols. H 3 H 2 H 2 H H 3 l H 3 H 2H 2 Hl 1-Propanol Acetyl chloride n-propyl acetate In the latter reaction, an organic base such as pyridine is usually added to react with the hydrogen chloride. A number of other methods can be used to synthesize the ester group. Among these are the addition of 2-methylpropene to an acid to form t-butyl esters, the addition of ketene to make H 2 Ketene H 2 H Propionic Acid H 2 2-Methylpropene (isobutylene) HH 2 Benzyl alcohol H H 2 t-butyl propionate H 2 Benzyl Acetate H Ag 3 - Silver acetate BrH 2 H 2 H 1-Bromo-3-methylbutane H 2 H 2 H Isoamyl acetate

acetates, and the reaction of a silver salt with an alkyl halide. As noted above, Fischer esterification is an equilibrium process. onsider the reaction of acetic acid with 1-butanol to give n-butyl acetate: H 3 H Acetic acid HH 2 H 2 H 2 n-butanol The equilibrium expression for this reaction is shown below. Keq= H 3 H 3 H H H 2H 2 H 2 H 2 H 2 H 2 H 3 n-butylacetate [H2] [HH2H2H2H3] H2 For primary alcohols reacting with unhindered carboxylic acids, K eq ~4. If equal quantities of 1- butanol and acetic acid are allowed to react, the theoretical yield of ester is only 67% at equilibrium. To upset the equilibrium we can, by Le hatelier's principle, increase the concentration of either the alcohol or acid, as noted above. If either one is doubled, the theoretical yield increases to 85%. When one is tripled, it goes to 90%. But note that in the example cited the boiling point of the relatively nonpolar ester is only about 8 higher than the boiling points of the polar acetic acid and 1-butanol, so a difficult separation problem exists if either starting material is increased in concentration and the product is isolated by distillation. Another way to upset the equilibrium is to remove water. This can be done by adding to the reaction mixture molecular sieves, an artificial zeolite, which preferentially adsorb water. Most other drying agents, such as anhydrous sodium sulfate or calcium chloride, will not remove water at the temperatures used to make esters. A third way to upset the equilibrium is to preferentially remove the water as an azeotrope. The information in the table below can be found in any chemistry handbook table of ternary (threecomponent) azeotropes. The Ternary Azeotrope of Boiling Point 90.7 Percentage omposition of Azeotrope ompound Boiling Point of Vapor Upper Lower Pure ompound Phase Layer Layer ( ) 1-Butanol 117.7 8.0 11.0 2.0 n-butyl 126.7 63.0 86.0 1.0 acetate Water 100.0 29.0 3.0 97.0 These data tell us that the vapor that distills from a mixture of 1-butanol, n-butyl acetate, and water will boil at 90.7 and the vapor contains 8% alcohol, 63% ester, and 29% water. The vapor is homogeneous, but when it condenses, it separates into two layers. The upper layer is composed of 11% alcohol, 86% ester, and 3% water, but the lower layer consists of 97% water with only traces of alcohol and ester. If some ingenious way to remove the lower layer from the condensate and still return the upper layer to the reaction mixture can be devised, then the equilibrium can be upset and nearly 100% of the ester can be produced in the reaction flask. The Dean-Stark Apparatus shown below is one such solution. Esterfication using a carboxylic acid and an alcohol requires an acid catalyst. ften, the acid form of an ion-exchange resin is used. This resin, in the form of small beads, is a cross-linked

polystyrene that bears sulfonic acid groups on some of the phenyl groups. Essentially it is an immobilized form of p-toluenesulfonic acid, an organic-substituted sulfuric acid. This catalyst has the distinct advantage that at the end of the reaction it can be removed simply by filtration. Immobilized catalysts of this type are becoming more and more common in organic synthesis. 3-way connector Dean-Stark trap for removing water through azeotropic distillation. The apparatus shown, modeled after that of Dean and Stark, achieves the desired separation of the two layers. The mixture of equimolar quantities of 1-butanol and acetic acid is placed in the flask along with an acid catalyst. Stirring reduces bumping. The vapor, the temperature of which is 90.7, condenses and runs down to the sidearm, which is closed with a cork. The layers separate, with the denser water layer remaining in the sidearm while the lighter ester plus alcohol layer runs down into the reaction flask. As soon as the theoretical quantity of water has collected, the reaction is over and the product in the flask should be ester of high purity. TL You are required to run a TL to monitor the progress of the reaction. Plates should have three spots (or lanes) on the origin: one for the main organic starting material that is being transformed, one for a cospot (starting material and the reaction mixture), and one for the reaction mixture. Synthesis of Benzyl Acetate: H3 H 2 H H H 2 Acetic anhydride MW 102.09 bp 139, den 1.082 20 1.3900 Benzyl Alcohol MW 108.14 bp 205, den 1.045 20 1.5400 Benzyl Acetate MW 150.18 bp 206, den 0.1.040 20 1.5020 To a reaction tube add 540 mg of benzyl alcohol and 510 mg of acetic anhydride and a boiling chip. Attach the empty distilling column as an air condenser. Reflux the resulting mixture for 1 h or more, then cool it to room temperature. Add 1 ml of ether (use the wet ether found in a supply bottle in each hood) and 1 ml of water, separate the organic layer. Wash the aqueous layer with 1 ml of ether. ollect the ether layers, wash with sodium bicarbonate (2 X 1 ml), water (2 x 1 ml), and sat'd sodium chloride solution (1 ml). Dry the ether layer with anhydrous sodium sulfate, remove the organic layer into a vial and evaporate the ether by blowing it off in a stream of N 2. Isolation and Purification: n a larger scale, the product would probably be isolated and purified by vacuum distillation, but

this is difficult to do on a microscale without severe losses of material and thus poor yields. Therefore, chromatography is used here for purification. Assemble a microscale chromatography column (see Lab Guide for review), being sure it is clamped in a vertical position. lose the valve, and fill the column with dichloromethane to the bottom of the funnel. Prepare a slurry of 1 g of silica gel in 4 ml of dichloromethane in a small beaker. Stir the slurry gently to get rid of air bubbles, and gently swirl, pour, and scrape the slurry into the funnel, which has a capacity of 10 ml. After some of the silica gel has been added to the column, open the stopcock and allow solvent to drain slowly into an Erlenmeyer flask. Use this dichloromethane to rinse the beaker containing the silica gel. As the silica gel is being added, tap the column with a glass rod or pencil so the adsorbent will pack tightly into the column. ontinue to tap the column while cycling the dichloromethane through the column once more. Next, drain the solvent just to the surface of the silica. Add 10 drops of H 2 l 2 to the product mixture and using a Pasteur pipet, add this solution to the column, letting it run into the adsorbent and stopping when the solution reaches the top of the silica. The product vial is rinsed twice with 0.5-mL portions of dichloromethane that are run into the column, with the eluent being collected in a tared reaction tube. The elution is completed with a few more mls of dichloromethane. You will need to collect several 1 ml fractions. Analyze these by TL using 50:50 hexane:h 2 l 2 spotting starting benzyl alcohol as a standard. Evaporate the dichloromethane under a stream of nitrogen in the hood, and remove the last traces by connecting the reaction tube to the vacuum. Since the dichloromethane boils at 40 and the product at 206, separation of the two is easily accomplished. Determine the weight of the product, and calculate the yield. The ester should be a perfectly clear, homogeneous liquid. Analyze your product by the method listed on your assignment slip, preparing the sample according to the instructions in the Lab Guide. Analysis In addition to TL analysis, you may be instructed to analyze your final product by IR or NMR. Analyze your sample according to your assignment sheet and the instructions on Sample Preparation in the Lab Guide. leaning Up: After drying, place the used silica gel in the solid waste bin. Any dichloromethane should be placed in the halogenated organic waste container. Post Lab Questions: 1. Write the reaction for the synthesis of benzyl acetate from a silver salt and a bromo compound. 2. Write the reaction for the synthesis of benzyl acetate from an alcohol and an acid chloride.