Approximations for Elliptic Integrals*

Similar documents
EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

J2 e-*= (27T)- 1 / 2 f V* 1 '»' 1 *»

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES

BERGMAN OPERATORS FOR ELLIPTIC EQUATIONS IN THREE INDEPENDENT VARIABLES

Completion Date: Monday February 11, 2008

CONVEXITY OF INTEGRAL MEANS OF SUBHARMONIC FUNCTIONS

Inverse Iteration on Defective Matrices*

THE CONTIGUOUS FUNCTION RELATIONS FOR pf q WITH APPLICATIONS TO BATEMAN'S ƒ»«and RICE'S # n (r, p, v)

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

DYNAMICS OF THE ZEROS OF FIBONACCI POLYNOMIALS M. X. He Nova Southeastern University, Fort Lauderdale, FL. D, Simon

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

SOME INFINITE SERIES. H. f. SANDHAM. 1. We sum eight general infinite series [l], particular cases of which are. Is 33 53

AN ARCSINE LAW FOR MARKOV CHAINS

Qualification Exam: Mathematical Methods

w = X ^ = ^ ^, (i*i < ix

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) thing CFAIHIHD fkthf.

Calculation of the Ramanujan t-dirichlet. By Robert Spira

Error Estimates for the Clenshaw-Curtis Quadrature

Bernoulli Polynomials

535.37(075.8) : /, ISBN (075.8) ISBN , 2008, 2008

MATHEMATICAL FORMULAS AND INTEGRALS

A NOTE ON A BASIS PROBLEM

Quadrature Formulas for Infinite Integrals

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

(1-2) fx\-*f(x)dx = ^^ Z f(x[n)) + R (f), a > - 1,

Polynomial expansions in the Borel region

A CONVERGENCE CRITERION FOR FOURIER SERIES

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~

Math Homework 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

A NOTE ON THE DEGREE OF POLYNOMIAL APPROXIMATION*

Math 1431 Final Exam Review

1. (4 % each, total 20 %) Answer each of the following. (No need to show your work for this problem). 3 n. n!? n=1

A L A BA M A L A W R E V IE W

(1.1) Mi= f (Z -1-)dP, i = 0, 1,,* - 1,

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

4 Uniform convergence

Have a Safe Winter Break

Math Final Exam - 12/12/2015

On the convergence of solutions of the non-linear differential equation

Ht) = - {/(* + t)-f(x-t)}, e(t) = - I^-á«.

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES*

Generalized Burgers equations and Miura Map in nonabelian ring. nonabelian rings as integrable systems.

CITY UNIVERSITY LONDON. BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION. ENGINEERING MATHEMATICS 2 (resit) EX2003

SINGULAR INTEGRAL OPERATORS ON THE UNIT CIRCLE 1

MATHEMATICAL FORMULAS AND INTEGRALS

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

APPH 4200 Physics of Fluids

A collocation method for solving some integral equations in distributions

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration.

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions

THE RAYLEIGH FUNCTION NAND KISHORE

4/16/2015 Assignment Previewer

ON THE HURWITZ ZETA-FUNCTION

Need Help? Need Help? WebAssign Math 125 HW_1C (Homework) If f(x) = ex -

On quasiperiodic boundary condition problem

THE HYPERBOLIC METRIC OF A RECTANGLE

A NOTE ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule)

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

EE2012 ~ Page 9 / Part 2. ben m chen, nus ece

MATH : Calculus II (42809) SYLLABUS, Spring 2010 MW 4-5:50PM, JB- 138

1. INTRODUCTION For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B (t), are defined by means of the generating function

SOME PROPERTIES OF CONTINUED FRACTIONS 1 + doz + K(z/(1 + dj)) W. J. THRON. 1 + diz à& +,

V393.R46 T-L, I,,I I~1?WWI. :II ~~~~~~~~~~~~~~ ',,":~ '''L -.. '..- '"" b,, ...- s,'ic ",,, :.. Ag--,, "._- ":. .::.:: .:.!_.., ,..

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

7 The cigar soliton, the Rosenau solution, and moving frame calculations

By C. W. Nelson. 1. Introduction. In an earlier paper by C. B. Ling and the present author [1], values of the four integrals, h I f _wk dw 2k Ç' xkdx

A SUBSPACE THEOREM FOR ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 27 (2011), ISSN

Calculus I Review Solutions

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2.

MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 118, APRIL An Algorithm for Computing Logarithms. and Arctangents. By B. C.

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Bounds for Eigenvalues of Tridiagonal Symmetric Matrices Computed. by the LR Method. By Gene H. Golub

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Section 6.2 Long Division of Polynomials

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40.

THE PRIME NUMBER THEOREM FROM log»! N. LEVINSON1. During the nineteenth century attempts were made to prove the

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43

III. Consequences of Cauchy s Theorem

1.1 Introduction to Limits

SERIES REPRESENTATIONS FOR BEST APPROXIMATING ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR.

Differential Equations DIRECT INTEGRATION. Graham S McDonald

The common oscillating lawn sprinkler has a hollow curved sprinkler arm, with a

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is.

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES

Experimental mathematics and integration

Math 185 Fall 2015, Sample Final Exam Solutions

Parts Manual. EPIC II Critical Care Bed REF 2031

THE POISSON TRANSFORM^)

INFINITE RADICALS IN THE COMPLEX PLANE1

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

UNIFORM BOUNDS FOR BESSEL FUNCTIONS

Module 2: Reflecting on One s Problems

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

Sums of arctangents and some formulas of Ramanujan

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

Transcription:

Approximations for Elliptic Integrals* By Yudell L. Luke Abstract. Closed-form approximations are derived for the three kinds of incomplete elliptic integrals by using the Padé approximations for the square root. An effective analytical representation of the error is presented. Approximations for the complete integrals based on trapezoidal-type integration formulae are also developed.. Approximations for the Square Root. We start with the following elementary identities: /cosh (n - l)d\ //sinh (n + l)d\ e~("+)9tanh 0 () tann0- ^ g / \ ginh fl J sinh (n -)0 ' /sinh («. - l)o\ //cosh (m - l)d\ e~ln+l)e coth 0 () coth 0 - ^ ginh e f/ ^ cogh e I r cqsh (n + )ö,,_.,,. /sinh 0 sinh nd\ /, 0 e~"* tanh 9 () tanh * = I coshfl ) / C Sh ns + coshn0 '...., a,, _., //sinh ö sinh nö\ e~~"e coth 0 () coth 0 = {cosh B0} / ( coshö j - sinhnö Now cosh (n - )6 sinh (n - )6, sinh 6 sinh n9 cosh 6 sinh 0 cosh 0 are polynomials in sinh0 of degree n. So if z = sinh0, then tanh 6 = ( - I/)-' and clearly (), () and (), () give rational approximations for ( - l/z)~ and ( - /z)', respectively. In the above remainder terms, we take e* = ( - z)' ± z', where the sign is chosen so that e* >. This is possible for all z except ^ z ^ 0. For z fixed, z ^ 0, z?, arg ( - l/z) < x, the remainder terms» 0 as n» =0. From [], we see that the approximations (l)-() are the (n, n), (n, n), (n, n) and (n -, n) approximants of the Padé matrix table. We note that the polynomials in these approximations can be expressed in terms of the Chebyshev polynomials, a fact which has also been observed by Longman []. The rational approximations can be easily decomposed into a sum of partial fractions. For our immediate applications we use the representations (), () in a slightly different form : Received February, 968. * This research was sponsored by the Atomic Energy Commission under Contract No. AT(- )-69. 67

68 YUDELL L. LUKE (5) ( - z)-l/ = (n -f írfl + ( - z sin 0m)" + Vn(z) L m-l J (6) ( - z)l/ = - z(n + I)" - Ún\ - Wn(z), =i z eos 0 (7) m 7Wx n - ' To describe the remainder terms, we have need for the following definition. Let (8) ±( -z) where the sign is chosen so that er lies outside the unit circle which is possible for all z except z ^. Then Z ^e-(n+z/)s (9) VÁZ) = zl/(l - e-f)[l + e-("+)f] ' zl/d / _»-i-v"("+/)r (0) * «= - \_\-t+w] > and for z fixed, () lim {Vniz) and Wniz)\ = 0, z?, arg ( - «) < t. n +00. Approximations for the Incomplete Elliptic Integrals of the First and Third Kinds. We write F(<t>, k,v) = j ( - v sin ay\l - k sin a)~l/da, () v sin (f> 9^ 0, arg ( fc) < x, arg ( fc sin <^) < x, which is the incomplete elliptic integral of the third kind if v ^ 0. If ( v sin <t>) < 0, we interpret the integral in the Cauchy sense. When v = 0, we have the incomplete elliptic integral of the first kind which is usually notated as F(<j>, k). Expressions for analytic continuation of the elliptic integrals are detailed in []. Now () A i+, v) = Fit, 0,») = ( - v)'' arc tan [( - v)' tan <t>] _ /,xl/, + iv - l)l/tan K^-irin iv ) tan <j> = tan <t> if v~ if v 5, arg ( v )\ < x <j> real, if v >, Here arc tan x is given its principal value, that is, x/ < arc tan x < x/ for oo < x <». Then with the aid of (5) and with the same restrictions as in (), we get

APPROXIMATIONS FOR ELLIPTIC INTEGRALS 69 Fit, k, p) = Fni<f>, k, v) - Q i<t>, k, v), () Fni<l>, k, p) = (n + ír^afo, *){l -, (/c sin 0m -,)", 9Z V» sin dm arc tan jam tan <j>) \ - K ^,,!.!. s > m=i (rm(fc sin Bm v ) -I n m7r /, S \l/,<jm= ( - fc sin 0m), 7-T- / Fniir/,k,u) = (rax+)[(/x)a(x/,,)- (5) -fce (6) (/x)a(x/,,) = (-r") \-l/ = 0 if i» > sin 0, m-icrm(/c sin" 0, if kv l, arg(l -»») <x, r. r, i \ f Vnjk sin a), Q i<b,k,v) = / y da. ' o l i» sin a We shall develop a very convenient asymptotic formula for Qni<t>, k, v), but first we remark that in the application of (), (5), it might happen that for a particular set of parameters, k sin Bm = i» in which event limiting forms in these equations must be taken. This can always be avoided by a proper choice of n. Next we turn to an analysis of the error. Suppose temporarily that 0 S /! < and -x/ < </> < x/. Then from (8) (7) It readily follows that z = k sin «= ( cosh f)", zl/(l - zv' da = (fc - z)l/ Qni<t>,k,v) e-(n+/)r{sinhr/(+coghr)}rfr -*{' - f)x' vl \l/> ( + 0( + e )M_ (8) k ( - cosh -f- cosh Ü n = arc cosh fe")- \/c sin </> / Let f = ij - y. Then (8) goes into a form to which Watson's lemma is applicable. We find (i -gvn+ tan <p' Vfc sin <j>/ Qni<p,k,v) = ( - y sin <t>) (ti - ) (9) + g dr. i» sin <j> cos <fr t» sin <f> - 0(n-) n - ^] ~ Mn

60 YUDELL L. LUKE "» = (-h-lj ' 0 ^ t/,5 = ( - fc sin») (0) QnÍT/,k,v) = / x v//i - gyw+ \n - / \ fc / ( -,)gl/ X - Sa + yg 8g + -, n- -0(7"*) " Un, g and p as in (9) with <j> = x/. The results (9), (0) are valid for complex values of k sin 0 provided arg ( fc) < x, arg ( k sin < ) < x and ( h)/k sin ^ is replaced by ( ± 5)/k sin d> where the sign is chosen so that ( == b)/k sin <f>\ <. Clearly, for >, k and v fixed, () lim Q (<, k,v) = 0, n >oo c sin <j> ^ 0, arg ( - fc) < x, arg ( - /, sin i < X The following results illustrate the approximations and the striking realism of the formulas for the error. The column "Error" means the true error, and the column "Approximate Error, (9)", for example, means the value of Qnid>, k, v) as given by (9) with Oin~) and pn omitted. The number in parentheses following a base number indicates the power of 0 by which the base number must be multiplied. Analogous descriptors like those above are used for all other tables in this paper. 56 n 56 8 56 8 F (x/, "/, -i') 0.988 970 686 0.998 0580 787 0.998 5 6 0.998 578 0.998 57 6 0.998 57 69 F (x/,, -') 0.987 0686 6 0.98587 789 996 0.9859 059 695 0.9859 0957 866 0.9859 097 05 0.9859 0978 6 0.9859 0978 70 F.Gr/, I//, 0) 0.85079 90 9 0.85 9906 56 0.85 70 060 0.85 786 5 0.85 790 66 0.85 790 7 0.85 790 7 Error 0.5(-) 0.89(-5) 0.500(-7) 0.56(-9) 0.6(-ll) 0.(-) Error 0.7(-) 0.7(-) 0.79(-6) 0.7(-7) 0.5(-9) 0.07(-0) Error 0.(-) 0.8(-5) 0.87(-7) 0.0(-9) 0.8(-ll) 0.(-) Approximate Error, (9) 0.5(-) 0.77(-5) 0.9(-7) 0.5(-9) 0.6(-ll) 0.7(-) Approximate Error, (9) 0.68(-) 0.(-) 0.7(-6) 0.7(-7) 0.(-9) 0.07(-0) 0.7(-) Approximate Error, (9) 0.9(-) 0.77(-5) 0.8(-7) 0.8(-9) 0.8(-ll) 0.56(-) 0.8(-7)

APPROXIMATIONS FOR ELLIPTIC INTEGRALS 6 n Fn(ir/,U/,-").7 7595 888.6 067 76.95 667 6.69 065 800 5.76 5 988 6.77 68 8 8.77 60 95 0.77 7 68 5.77 7 95 Error Approximate Error, (0) 0.9K-) 0.98(-l) 0.855(-) 0.855(-) 0.8(-) 0.80(-) 0.8(-) 0.8(-) 0.8(-5) 0.8(-5) 0.86(-6) 0.86(-6) 0.90(-8) 0.90(-8) 0.0(-9) 0.0(-9) 0.(-) (). Approximations for the Incomplete Elliptic Integral of the Second Kind. Let Using (6) and the fact that /* j E(>, k) = / ( - fc sin a)l/da, * n [arg ( k)\ < T j arg ( /c sin <f>)\ < ir sin aüa - /i..-/,,,-, s /,,-,,, -. = a \ ( a ) arc tan [( a ) tan <f>] <f>], j a sin a a?±, arg ( a )\ <x, * > -t I /I m. we find that under the same restrictions as for (), () E(<j>, k) = En(<p, k) - Sn(<p, fc), (5) En(d>, fc) = (n + )0 - (n + l)" ± ^n 0m arc tan (pm tan 0) ^ (6) En(w/,k) = (x/)[(ti (7) Sn(<t>,k)= i Wn(k sin a)da In the above arc tan is evaluated manner of getting (9), (0) we have (8) Sni<t>, k) = X m=l Pm n m7r / 7 Nl/ - ) - (n + I)- g tan 0 / ±g (n -) I) \fcsin<7j sin0 / - = 0( âi)te'^-/'5=^-fcsin^/', Pm = ( fc COS 0m), n + tan 0, = Pn. as in the discussion following (). After the \n+ ] g - g - g tan > + 0(tT) n- " Pn, (9) t -^^^+0(n-)]-p,, 8g(n - )

6 YUDELL L. LUKE 5 and pn as in (8) with <p = x/. In (8), (9), we impose the same conditions as in (). Also the sign in ( ± ô)/k sin <f> is chosen as in the discussion following (0). For </> and fc fixed, (0) lim S (0, fc) = 0, arg ( - fc) < x, arg ( - fc sin <t>)\ < x. Two sample calculations /( 5 6 n 5 6 8 0 5 (x/,'/) follow. 0.785 675 0.78 675 9 0.78 80 0 0.78 557 0.78 55 60 0.78 55 57 En(W,!'/).70 8575 7. 8655 6.7 050 58.06 7 55.05 799.05 6.05 6087 86.05 6075 8.05 6075 69 Error Approximate Error, (8) -0.00(-) -0.69(-) -0.57(-5) -0.9(-5) -0.55(-7) -0.5(-7) -0.75(-9) -0.7(-9) -0.(-ll) -0.08(-ll) -0.58(-) Error Approximate Error, (9) -0.60(-) -0.67(-) -0.8(-) -0.(-) -0.7(-) -0.8(-) -0.(-) -0.(-) -0.(-5) -0.(-5) -0.(-6) -0.(-6) -0.(-8) -0.(-8) -0.(-0) -0.5(-0) -0.86(-5) We remark that further representations for the incomplete elliptic integrals can be developed using (), () and also (l)-() together with the fact that y = yy~\ y z, but we omit such considerations.. Further Approximations for the Complete Elliptic Integrals. Consider the more general integral, () /ir/ ( - v sin i)-(l - k sin t)^dt, v <,w <, arg ( - fc) < x. Using trapezoidal-type numerical integration formulas discussed in a previous paper [], we have () B(k, v, «) = Bn(k, v, «) + Gn(k, v, u), () B(k, v, «) = Cn(k, v, «) - nn(k, v, «), () Bn(k, v, «) = ~ \JZ ( - " sin ^m)-(l - fc sin ft AU Lm=0 ( - vt\i - try ]. ßm = r n ' (5) C (fc, j», u) = -~ ^Z (. " sin <t>m) X(l k sin 0m)~", n m^l >m = (m - l)x An

APPROXIMATIONS FOR ELLIPTIC INTEGRALS 6 G ik, V,U>) = Z Lrnik, V, Co), (6) 00 Hn(k,v, u) = J ( )rlm(k,v, u), r=l. _. T.,. C cos tií dt (7) Ln(k,V,lc) = J-. -,. A - 'o ( v sin t) ( fc sin t) We now get an asymptotic formula for the evaluation of Ln(k, v, co). It is convenient to consider the contour integral intj, e dt In*(k,v,o>) = / (8) Mn ' ' 'c(l-vsint)(l-lpsmuy under the temporary assumptions that O á t! <, j» < and w <, as in (), where C is a rectangle with vertices at (0, 0), (x/, 0), (x/, R) and (0, R) with R > arc cosh fc-. Let R > o and so obtain.,... [*/ cos ntdt Mn(k,V,u) = / (l-f,s n,í)(l-*,bn,«r f" _e dy = ( )"sin xco / 'arc cosh k ' ( v cosh y) (fc cosh y )" Put y = arc cosh fc- - x and upon application of Watson's lemma to the resulting integral, we get )n(x/)fcv~ (l^l\ M»(fc,v,(o) = ^7 / \n/ ic\\ 7- ûj /i ç-\n (0) r a -co)/«(g +).g \ _,i i» fc ^,,5 = ( _ ky (-yu/)n» (l - «Vf cc(co-h)(g+l), n, -. fc = v, gas in (0). Notice that L (k, v, co) = M (fc, v, w). Also the series expansions for Gn(k, v, co) and Hn(k, v, co), see (6), are usually so rapidly convergent that they can be well approximated by use of the first term only. To extend the results to complex fc, we require arg ( fc) < x, and in (0), () replace ( o)/k by ( ± b)/k and choose the sign so that ( ± 8)/k\ <. Hence () lim \Gn(k, v, co) and Hn(k, v, co)} =0, v < l,co < l,fc;, arg ( - fc) < x. The foregoing results are also valid for all v, v ±, and all co, R(o>) <, x < arg co ^ x. When» >, we interpret () in the Cauchy sense. Some sample calculations based on (5) follow. The column "Approximate Error" is the value of L (fc, v, co) = Mn(fc, v, co) as given by (0), () without

6 YUDELL L. LUKE the 0(n~~) term. It calls for remark that for virtually the same number of terms, there is little difference in the accuracy of the formulas developed in this section and the corresponding formulas in the previous sections. However, (6) must be used with some caution because differences of large numbers occur since for m large, m ^ n, 6m is near x/ and tan dm is large. C (l'v, -'Vè) Error Approximate Error.69 575 56 0.586(0) 0.6(0).80 99 968 0.55(-l) 0.8(-l).0 75 606 0.65(-) 0.(-). 8788 5 0.5(-) 0.(-) 5.7 085 79 0.(-) 0.0(-) 6.76 96 9 0.5(-5) 0.(-5) 8.77 6 97 0.9(-7) 0.(-7) 0.77 707 57 0.9(-9) 0.86(-9) 5.77 7 95 0.67(-) n 5 6 S 0 5 C(ls/,0,- ).8 5 5. 708 88. 99 88.06 05058 9.05 679 97.05 60570 75.05 6078 07.05 6075 705.05 6075 68 Error -0.08(-l) -0.09(-) -0.6(-) -0.8(-5) -0.5(-6) -0.95(-7).(-9) -0. (-) Approximate Error -0.75(-l) -0.0(-) -0.608(-) -0.(-5) -0.(-6) -0.89(-7) -0.(-9) -0.0(-ll) -0.87(-6) 5. Acknowledgement. I am indebted to Miss Rosemary Moran for the numerical calculations. Midwest Research Institute Kansas City, Missouri 60. Y. L. Luke, "The Padé table and the r-maûiod," J. Math. Phys., v. 7, 958, pp. 0-7. MR 0 #5558.. I. M. Longman, "The application of rational approximations to the solution of problems in theoretical seismology," Bull. Seismological Soc. America, v. 56, 966, pp. 05-065.. P. F. Byrd & M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, New York, 95. MR IS, 70.. Y. L. Luke, "Simple formulas for the evaluation of some higher transcendental functions," /. Math. Phys., v., 956, pp. 98-07. MR 7, 8.