Compact star crust: relativistic versus Skyrme nuclear models

Similar documents
Symmetry Energy within the Brueckner-Hartree-Fock approximation

arxiv: v1 [nucl-th] 17 Dec 2008

The crust-core transition and the stellar matter equation of state

arxiv: v1 [nucl-th] 30 Mar 2015

arxiv:nucl-th/ v2 12 Jan 2005

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

Clusters in Dense Matter and the Equation of State

Toward a unified description of equilibrium and dynamics of neutron star matter

The Vlasov formalism for extended relativistic mean field models: the crust-core transition and the stellar matter equation of state

arxiv:nucl-th/ v1 15 Dec 2004

The role of stangeness in hadronic matter (in)stability: from hypernuclei to compact stars

Nuclear Matter Incompressibility and Giant Monopole Resonances

Isospin-dependent clusterization of Neutron-Star Matter

Symmetry energy within the BHF approach

Parity-Violating Asymmetry for 208 Pb

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

AMD. Skyrme ( ) 2009/03/ / 22

Stochastic Mean Field (SMF) description TRANSPORT Maria Colonna INFN - Laboratori Nazionali del Sud (Catania)

Clusters in Nuclear Matter

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

arxiv:astro-ph/ v2 24 Apr 2001

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta

Neutron Rich Nuclei in Heaven and Earth

Symmetry energy and the neutron star core-crust transition with Gogny forces

Nucelon self-energy in nuclear matter and how to probe ot with RIBs

Isospin asymmetry in stable and exotic nuclei

Liquid-Gas Phase Transition of Supernova Matter and Its Relation to Nucleosynthesis

in covariant density functional theory.

Equations of State of Relativistic Mean-Field Models with Different Parametrisations of Density Dependent Couplings

Nuclear & Particle Physics of Compact Stars

Relativistic point-coupling models for finite nuclei

Equation of state for supernovae and neutron stars

Some new developments in relativistic point-coupling models

Nuclear equation of state with realistic nuclear forces

Dipole Polarizability and the neutron skin thickness

Localized form of Fock terms in nuclear covariant density functional theory

Gianluca Colò. Density Functional Theory for isovector observables: from nuclear excitations to neutron stars. Università degli Studi and INFN, MIlano

Self-consistent study of spin-isospin resonances and its application in astrophysics

Heavy-ion reactions and the Nuclear Equation of State

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Modeling the EOS. Christian Fuchs 1 & Hermann Wolter 2. 1 University of Tübingen/Germany. 2 University of München/Germany

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra

Peter Ring. ISTANBUL-06 New developments in covariant density functional theory. Saariselkä April 20, 2009

Nuclear equation of state for supernovae and neutron stars

Effects of U boson on the inner edge of neutron star crusts

Nuclear structure Anatoli Afanasjev Mississippi State University

An empirical Equation of State for nuclear physics and astrophysics

Nuclear Structure for the Crust of Neutron Stars

Equation-of-State of Nuclear Matter with Light Clusters

Collective excitations in nuclei away from the valley of stability

The Nuclear Equation of State

Symmetry energy, masses and T=0 np-pairing

Nuclear phase transition and thermodynamic instabilities in dense nuclear matter

Pygmy dipole resonances in stable and unstable nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Pure Neutron Matter Constraints and Nuclear Symmetry Energy

T. GAITANOS, H.H. WOLTER Sektion Physik der Universität München Am Coulombwall 1, D Garching, Germany

arxiv: v1 [nucl-th] 10 Apr 2015

The Nuclear Many-Body Problem

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY

Transport in the Outer Core of Neutron Stars

Investigations on Nuclei near Z = 82 in Relativistic Mean Field Theory with FSUGold

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

A survey of the relativistic mean field approach

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

Neutrino Mean Free Path in Neutron Stars

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Dynamics of Phase Transitions in Asymmetric Nuclear Matter

Skyrme Hartree-Fock Methods and the Saclay-Lyon Forces

Neutron Skins with α-clusters

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

The pygmy dipole strength, the neutron skin thickness and the symmetry energy

Constraining the symmetry energy and effective mass splitting from HICs

Probing the EoS of Asymmetric Matter

Correlations between Saturation Properties of Isospin Symmetric and Asymmetric Nuclear Matter in a Nonlinear σ-ω-ρ Mean-field Approximation

The isospin dependence of the nuclear force and its impact on the many-body system

Interaction of antiprotons with nuclei

The Nuclear Equation of State: a Tool to Constrain In-Medium Hadronic Interactions

NN-Correlations in the spin symmetry energy of neutron matter

Neutrino Interactions in Neutron Star Matter

Potential Model Approaches to the Equation of State

Discerning the symmetry energy and neutron star properties from nuclear collective excitations

The Nuclear Equation of State and the neutron skin thickness in nuclei

b - stable matter of protoneutron star

Extracting symmetry energy information with transport models

Dipole Polarizability and the neutron skin thickness

Compact stars and the symmetry energy

Nuclear Symmetry Energy and its Density Dependence. Chang Xu Department of Physics, Nanjing University. Wako, Japan

Study of the spin orbit force using a bubble nucleus O. Sorlin (GANIL)

Neutron star structure explored with a family of unified equations of state of neutron star matter

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies

arxiv:nucl-th/ v1 6 Dec 2003

arxiv:nucl-th/ v1 17 Sep 2003

arxiv: v1 [nucl-th] 7 Apr 2009

Nature of low-energy dipole states in exotic nuclei

Effects of n-p Mass Splitting on Symmetry Energy

Transcription:

Problem How do relativistic models, used to build EoS of compact stars, behave at subsaturation densities? EoS at subsaturation densities/crust of compact stars: how do relativistic and Skyrme nuclear models compare? Can we constrain the temperature and isospin dependence of the nuclear EoS studying the subsaturation density behaviour of the EoS of ANM?

Compact star crust: relativistic versus Skyrme nuclear models Camille Ducoin, Philippe Chomaz, Alexandre Santos, Constança Providência, Universidade de Coimbra, Portugal The Complex Physics of Compact Stars Ladek Zdroj, 18-29 February 28

Outline Energy functionals Skyrme interactions Relativistic Mean-Field Nuclear Models Equilibrium properties Thermodynamical instabilities Dynamical instabilities Formalism Instability Region Stellar Matter Summary Conclusions

Skyrme Functional The Skyrme energy-density functional homogeneous, spin-saturated matter, no Coulomb interaction H = K + H + H 3 + H eff K = 2 2m τ H = C ρ 2 + D ρ 2 3 H 3 = C 3 ρ σ+2 + D 3 ρ σ ρ 2 3 H eff = C eff ρτ + D eff ρ 3 τ 3

Skyrme Functional: parametrizations chosen SIII - fitted to double magic nuclei(beiner et al A238 76(1974)) SGII - with spin and pairing effects and constraints on K (Van Giai et al NPA371(1982)) Sly23a - improves the isospin description (Chabanat et al NPA627 (1997)) LNS -fitted to a Brueckner-Hartree-Fock calculation extended to spin and isospin polarized homogeneous matter (Cao et al PRC 76(26)) NRAPR- fitted to the APR EoS obtained from a variational microscopic calculation (Steiner et al PhysRep 411(25))

Skyrme Functional: parametrizations chosen Model B/A ρ K E sym M /M (MeV) (fm ) (MeV) (MeV) (MeV) SIII 15.85.145 355.5 28.16.76 SGII 15.59.159 215.4 26.85.79 SLy23a 15.99.16 229.9 31.97.697 NRAPR 15.86.16 225.7 32.79.7 LNS 15.32.175 21.9 33.4.825

RMF Lagrangian for npe matter Lagrangian density L NLWM = L i + L mesons + L γ + L e, i=p,n Nucleon contribution: Li = ψ i [γ µ D µ M ] ψ i, D µ = i µ g v V µ gρ 2 τ bµ ea µ 1+τ 3 2 M = M g s φ g δ τ δ. Meson contribution L mesons = L σ + L ω + L ρ + L δ + L non linear... Electromagnetic contribution: Lγ = 1 4 F µνf µν Electron contribution: Le = ψ e [γ µ (i µ + ea µ ) m e ]ψ e

Relativistic Nuclear Models Parametrizations tested: NL3: includes non-linear σ terms (Lalazissis et al PRC55(1997)) Density Dependent Hadron Models: TW, DDME2 (Typel & Wolter, NPA656, Niksic PRC66 (22)) The coupling meson-nucleon parameters are density dependent Thermodynamical consistency: requires the inclusion of a rearrangement contribution Σ R in the self-energies NLδ, DDHδ: include the δ meson (Greco et al PRC67 (23), Gaitanos et al NPA732 (24)) Isovector channel has a saturation mechanism similar to isoscalar channel The symmetry energy at larger densities increases faster

Relativistic Nuclear Models Model B/A ρ K E sym M /M (MeV) (fm ) (MeV) (MeV) (MeV) NL3 16.3.148 272 37.4.6 NLδ 16..16 24 3.5.6 TW 16.3.153 24 32..56 DD-ME2 16.14.152 251 32.3.57 DDHδ 16.3.153 24 25.1.56

Isoscalar channel Binding energy: E/A Pressure: P = ρ 2 (E/A)/ ρ Incompressibility: K = 9 P/ ρ

Isoscalar channel E/A (MeV) ) P (MeV fm 2 15 1 5 5 1 15 SIII SGII Sly23a NRAPR LNS 2.5.1.15.2.25.3.35.4.45 1.8.6.4.2.2.4.6 ρ (fm ) P (MeV fm ) E/A (MeV) 2 15 1 5 5 1 15 2 1.5.5 NL3 TW DDME2.5.1.15.2.25.3.35.4.45 NL δ TW δ ρ (fm ).8 1.2.4.6.8.1.12.14.16.18.2 ρ (fm ) 1.5.1.15.2 ρ (fm ) 4 4 3 3 K (MeV) 2 1 K (MeV) 2 1 1 1.2.4.6.8.1.12.14.16.18.2 ρ (fm ).5.1.15.2 ρ (fm )

Density of upper spinodal border ρ s ρ (fm ) (fm ) Sly23a.12.16 SGII.11.159 SIII.98.145 RATP.13.16 NR-APR.13.161 NLS.111.175 NL3.96.148 NLδ.12.16 TW.96.153 DDHδ.95.153 ME2.99.152

Isovector channel Symmetry energy: a s = 1 2 2 F y 2, Slope of symmetry energy: L = 3ρ a s Symmetry incompressibility: K sym = 9ρ 2 a s, y = ρ 3 /ρ

Symmetry energy 5 SIII SGII Sly23a NRAPR 4 LNS (MeV) a s 3 2 1.5.1.15.2.25.3.35.4.45 ρ (fm )

Symmetry energy (MeV) a s 5 SIII SGII Sly23a NRAPR 4 LNS NL3 ME2 3 TW 2 1 NL δ TWδ.5.1.15.2.25.3.35.4.45 ρ (fm )

Slope of the symmetry energy L = 3ρ a s L (MeV) 5 45 4 35 3 25 2 SIII SGII Sly23a NRAPR LNS NL3 ME2 TW TWδ NL δ 15 1 5.5.1.15.2.25.3.35.4.45 ρ (fm )

Symmetry incompressibility K sym = 9ρ 2 a s, (MeV) 5 1 15 SIII SGII Sly23a NRAPR LNS K sym 2 25 NL3 ME2 TW TW δ NL δ.5.1.15.2.25.3.35.4.45

Isovector chemical potential µ 3 = µ n µ p = 2 F/ ρ 3 parabolic approximation: µ par 3 = 4 a s ρ 3 /rho para 3 /µ 3 µ 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 SIII SGII Sly23a LNS NRAPR NL3 TW DDME2 ρ =.5 fm para 3 /µ 3 µ 1.25 1.2 1.15 1.1 1.5 ρ =.3 fm 1.1 1.1.2.3.4.5.6.7.8.9 1 ρ /ρ 3 1.1.2.3.4.5.6.7.8.9 1 ρ /ρ 3

Thermodynamical Stability Conditions Stability condition: the free energy curvature matrix C is positive. ( 2 ) F C ij = F ij = ρ i ρ j The free energy curvature matrix: C = ( µn ρ n µ p ρ n µ n ρ p µ p ρ p Stability conditions for asymmetric nuclear matter (ANM) : T ) Tr(C) >, Det(C) >.,

Thermodynamical instability: RMF ρ (fm ) ρ (fm ) ρ (fm ).12.1.8.6.4.2.1.8.6.4.2.1.8.6.4.2 NL3 TM1 TW NL δ DDHρδ δ T= MeV T=1 MeV T=14 MeV.2.4.6.8 1 Largest differences: at finite T and large δ Avancini et al PRC7 (24)

Thermodynamical Spinodal (ρ p, ρ n ) Curvature at ρ s : 2 det C(ρ s,) ρ 2 3 = 4 ρ 4 [ a s (ρ 2 a s + 2ρa s) 2(ρa s) 2 ].12.1.8 SIII SGII Sly23a NRAPR LNS T=.6 ρ p.4.2.12.2.4.6.8.1.12 ρ (fm ) n

Thermodynamical Spinodal (ρ p, ρ n ).12.1.8 SIII SGII Sly23a NRAPR LNS NL3 TW DD ME2 T= p ρ.6.4.2.12.2.4.6.8.1.12 ρ n (fm )

Thermodynamical Spinodal (ρ p, ρ n ): meson δ.12 ) (fm p ρ.1.8.6.4 NL3 TW DD ME2 NL TW δ δ.2.2.4.6.8.1.12 ρ (fm ) n

Thermodynamical instability direction the crossing of the spinodal with the axis of symmetric matter: ρ s corresponds to the zero of the incompressibility function K(ρ) Skyrme interaction predict larger instability regions. At low densities all spinodals reach high asymmetry and cannot be distinguished.

Thermodynamical Spinodal (µ 3, ρ) (MeV) 1 5 SIII SGII Sly23a NRAPR LNS (MeV) µ 3 3 1 5 NL3 TW DD ME2 TWδ NLδ µ 5 5 1 1.2.4.6.8.1.12.2.4.6.8.1.12 ρ (fm ) ρ (fm ) (ρ,µ 3 ) spinodal: all models are distinct at all densities,

Spinodal Surface The eigenvalues of the stability matrix are given by λ ± = 1 ( ) Tr(F) ± Tr(F) 2 2 4Det(F), with eigenvectors δρ ± δρ ± i δρ ± j = λ ± F jj F ji, i, j = p, n The largest eigenvalue λ + is always positive The smallest λ becomes negative at subsaturation densities

Distillation Effect T = MeV, y p =.2, ρ p /ρ n =.25.9.8 δρ p /δρ n.7 NL3 TM1.6 NL δ TW DDH δ.5.2.4.6.8.1 ρ (fm ) Avancini et al PRC74 (26)

Distillation Effect T = MeV, y p =.2,.4 1.9 δρ p /δρ n.8.7 NL3 TW Λ=.25 no rearr Avancini et al PRC74 (26).6.2.4.6.8.1 ρ (fm )

Thermodynamical instability direction /δρ 3 δρ Distillation effect if δρ 3 /δρ <.4 for Z/A=.3.5.45.4.35.3.25.2.15.1.5 Z/A=.3, T= SIII SGII Sly23a LNS NRAPR.2.4.6.8.1.12 ρ (fm ) NL δ TW δ DDME2 NL3 TW Avancini et al PRC74 (26)

Thermodynamical instability direction Common trend: reduction of the distillation effect with density. DD-ME2 follows quite closely the Skyrme parametrization Sly23a with the smallest distillation effect TW follows the general trend of all the other models. NL3 and NLδ: distillation effect with density increases with density Multifragmentation heavy-ion collisions: isospin content of large fragments sensitive to δρ 3 /δρ

Dynamical instabilities The Relativistic Vlasov Equation The time evolution of f i is described by the Vlasov equation df i dt =, i = p, n, e f i t + {f i, h i } =, i = p, n, e

Small perturbation of the system Equilibrium state characterized by: P Fn, P Fp, P Fe Charge neutrality: P Fe = P Fp Perturbed fields: F i = F i + δf i, Perturbed distribution function: f = f + δf, δf i = {S i, f i } Generating function: S(r, p, t) = diag(s p, S n, S e ),

Linearized Equations of Motion The linearized relativistic Vlasov equation ds i dt + {S i, h i } = δh i Longitudinal fluctuations: ( Si δf j δρ i δh i ) = ( Sω,i (x) δf ω,j δρ ω,i δh ω,i ) e i(q r ωt) x = cos(p q), i = e, p, n, j = σ,ω,ρ,γ

Linearized Equations of Motion One-body hamiltonian variation Electrons [ δh e = e δa p δa ], ǫ e nucleons: relativistic models δh i = g s δφ M ǫ + δv i p δv i ǫ, i = p, n nucleons: Skyrme interactions δh i = [ ] U (1) ij + xu (2) ij δρ j j

Finite size instabilities: npe matter The instability growth ratio and direction of the unstable mode 1 1/τ ((fm/c).7.6.5.4.3.2 SIII SGII Sly23a LNS NRAPR NL3 TW ME2 ρ=.5 fm, Z/A=.3, T= Vlasov /δρ 3 δρ.5.45.4.35.3.25.2.15 NL3 TW DD ME2.1 5 1 15 2 25 3 q (MeV/c).1.5 5 1 15 2 25 3 q (MeV/c)

Instability growth rates/ Direction of instability Sly23a: the smallest growth rates of the Skyrme interactions Relativistic models: smaller growth rates, and q ranges Low q: all models similar behavior defined by electromagnetic interaction anti-distillation is model dependent ( δρ3 /δρ>.4) no anti-distillation: NL3 and DDME2 Large q behavior: defined by the finite range of the nuclear force Distillation behavior: NL3 shows the strongest distillation TW and DDME2 behave like Skyrme interactions

Stellar Matter β-equilibrium matter: neutrino free.12.1.8.6 DU SIII SGII Sly23a NRAPR LNS Y i (p, µ ).25.2.15 NL3 TW DDME2 DU DU p p, µ= Y i.4.2.1.5 p µ p, µ=.5.1.15.2.25 ρ (fm ).3.35.4.45.5.1.15.2.25.3.35.4.45 ρ (fm )

β-equilibrium matter: neutrino trapped Y i.4.35.3.25.2.15.1.5 Y l =.4 SIII SGII Sly23a LNS NRAPR.5.1.15.2.25.3.35.4.45 ρ (fm ) Y i (ν e e p).4.35.3.25.2.15.1.5 p ν NL3.5.1.15.2.25.3.35.4.45 ρ (fm ) TW, DDME2

Barionic density at µ onset model ρ (fm ) SIII.19 SGII.137 Sly23a.112 LNS.118 NRAPR.111 NL3.112 TW.115 DDME2.114 For SIII the muons disappear at ρ >.239123fm

β-equilibrium npeν e matter/ Instability region β-equilibrium EoS with/without neutrinos and the dynamical spinodal surface por npe matter 12 115 T=1 MeV (MeV) e +µ p µ t 11 15 1 95 SIII SGII Sly23a LNS NRAPR NL3 9 85 86 88 9 92 94 96 µ t (MeV) n β-equilibrium EoS without neutrinos: no crossing.

Edge of outer/inner crust Crossing of the β-equilibrium EoS with/without neutrinos with the dynamical spinodal surface por npe matter.12.1.8 = ν ρ Y l =.4 SIII SGII Sly223a LNS NRAPR NL3 cros b ρ.6.4.2 2 4 6 8 1 12 14 16 18 T (MeV)

Eos/dynamical spinodal crossing The behavior of different models follows the trend of the thermodynamical spinodals: at the larger densities and very asymmetric matter the Sl23a spinodal extends to larger asymmetries and the NL3 to smaller ones. 1 5 (MeV) 3 µ 5 1.2.4.6.8.1.12 ρ (fm )

Edge of inner crust: T = MeV Densities at the inner edge of the crust (fm ) from spinodal of pne matter for k = 8 MeV/c Y ν = Y L =.4 model ρ cross,sup ρ cross,sup SIII.1978.9296 SGII.7643.8821 SLy23a.7883.8758 LNS.7724.9579 NRAPR.7228.8828 NL3.5345.8146 TW.752.8387 DD-ME2.723.8258

Size of clusters Half-wave-length of the most unstable mode inside the instability region, along a path of β-equilibrium ) λ /2 (fm 2 18 16 14 12 1 8 6 ρ =, T= ν NL3 TW ME2 SIII SGII Sly23a LNS NRAPR ) λ /2 (fm 2 18 16 14 12 1 8 6 Y l =.4, T=1 MeV NL3 SIII SGII Sly23a LNS NRAPR 4 2 Vlasov 4 2 Vlasov.2.4.6.8.1.12 ρ (fm b ).2.4.6.8.1.12 ρ (fm b )

Most Unstable Modes Neutrino free: relativistic models predict larger clusters > 6 fm, Skyrme forces clusters with 4 fm may appear high density border: all models predict similar sizes. Neutrino trapped matter at T=1 MeV: The size of the clusters does not change much with density Mean value depends on the model, ranging from 5 fm for SIII to 8 fm for NL3 and SLy23a

Conclusions RMF/DDH versus Skyrme Equilibrium properties: larger differences in the isovector channel RMF/DDH: smaller thermodynamical spinodal regions RMF: distillation effect increases with density Skyrme/DDH: distillation effect decreases with density ρ >.1fm RMF/DDH: larger cluster in the crust Dynamic properties differ: RMF/DDH larger clusters, smaller growth rates, instabilities extend to smaller q. What do other approachs starting from NN interaction, including correlations, etc.. predict for the quantities discussed? Could transport calculations for isospin diffusion currents, isospin content of fragments, etc.. distinguish models?