COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA

Similar documents
COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES

On the Ordinary and Signed Göllnitz-Gordon Partitions

Ramanujan-Slater Type Identities Related to the Moduli 18 and 24

On an identity of Gessel and Stanton and the new little Göllnitz identities

Singular Overpartitions

4-Shadows in q-series and the Kimberling Index

Some More Identities of Rogers-Ramanujan Type

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS

A Generalization of the Euler-Glaisher Bijection

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS

IAP LECTURE JANUARY 28, 2000: THE ROGERS RAMANUJAN IDENTITIES AT Y2K

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

arxiv: v1 [math.co] 25 Nov 2018

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava

q-pell Sequences and Two Identities of V. A. Lebesgue

A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g 2

THE METHOD OF WEIGHTED WORDS REVISITED

Some congruences for Andrews Paule s broken 2-diamond partitions

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

arxiv: v1 [math.co] 25 Dec 2018

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

A Fine Dream. George E. Andrews (1) January 16, 2006

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017)

Research Article New Partition Theoretic Interpretations of Rogers-Ramanujan Identities

A REFINEMENT OF THE ALLADI-SCHUR THEOREM

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions

arxiv: v1 [math.co] 18 Sep 2014

On q-series Identities Arising from Lecture Hall Partitions

arxiv:math/ v2 [math.co] 19 Sep 2005

ON PARTITION FUNCTIONS OF ANDREWS AND STANLEY

A COMBINATORIAL PROOF AND REFINEMENT OF A PARTITION IDENTITY OF SILADIĆ

Dedicated to Krishna Alladi on the occasion of his 60th birthday

Three Aspects of Partitions. George E. Andrews 1

An Algebraic Identity of F.H. Jackson and its Implications for Partitions.

Arithmetic Relations for Overpartitions

Arithmetic properties of overcubic partition pairs

arxiv: v2 [math.co] 3 May 2016

Elementary proofs of congruences for the cubic and overcubic partition functions

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

Ramanujan-type congruences for overpartitions modulo 16. Nankai University, Tianjin , P. R. China

ON THE SLACK EULER PAIR FOR VECTOR PARTITION

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222

arxiv: v2 [math.nt] 9 Apr 2015

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS

REFINEMENTS OF SOME PARTITION INEQUALITIES

A generalisation of the quintuple product identity. Abstract

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS

The Bhargava-Adiga Summation and Partitions

Arithmetic Properties of Partition k-tuples with Odd Parts Distinct

On m-ary Overpartitions

arxiv: v4 [math.co] 7 Nov 2016

Counting k-marked Durfee Symbols

HYBRID PROOFS OF THE q-binomial THEOREM AND OTHER IDENTITIES

Colored Partitions and the Fibonacci Sequence

ON 2- AND 4-DISSECTIONS FOR SOME INFINITE PRODUCTS ERNEST X.W. XIA AND X.M. YAO

The Truncated Pentagonal Number Theorem

(q n a; q) = ( a) n q (n+1 2 ) (q/a; q)n (a; q). For convenience, we employ the following notation for multiple q-shifted factorial:

Partitions With Parts Separated By Parity

Srinivasa Ramanujan Life and Mathematics

Rogers-Ramanujan Computer Searches

Two truncated identities of Gauss

Quadratic Forms and Congruences for l-regular Partitions Modulo 3, 5 and 7. Tianjin University, Tianjin , P. R. China

On a certain vector crank modulo 7

New congruences for overcubic partition pairs

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7

Pacific Journal of Mathematics

THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS

Compositions, Bijections, and Enumerations

ON A CONTINUED FRACTION IDENTITY FROM RAMANUJAN S NOTEBOOK

COMPOSITIONS, PARTITIONS, AND FIBONACCI NUMBERS

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

Cranks in Ramanujan s Lost Notebook

A New Form of the Quintuple Product Identity and its Application

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES

RAMANUJAN S MOST BEAUTIFUL IDENTITY

SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION

International Journal of Pure and Applied Sciences and Technology

On the expansion of Ramanujan's continued fraction of order sixteen

Michael D. Hirschhorn and James A. Sellers. School of Mathematics UNSW Sydney 2052 Australia. and

A Determinant Identity that Implies Rogers-Ramanujan

New Congruences for Broken k-diamond Partitions

Ramanujan-type congruences for broken 2-diamond partitions modulo 3

UNIFICATION OF THE QUINTUPLE AND SEPTUPLE PRODUCT IDENTITIES. 1. Introduction and Notation

New infinite families of congruences modulo 8 for partitions with even parts distinct

arxiv:math/ v2 [math.qa] 22 Jun 2006

The spt-crank for Ordinary Partitions

Partition Congruences in the Spirit of Ramanujan

Two finite forms of Watson s quintuple product identity and matrix inversion

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x.

New modular relations for the Rogers Ramanujan type functions of order fifteen

Bilateral truncated Jacobi s identity

SOME IDENTITIES RELATING MOCK THETA FUNCTIONS WHICH ARE DERIVED FROM DENOMINATOR IDENTITY

Ramanujan-type Congruences for Broken 2-Diamond Partitions Modulo 3

Transcription:

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 9383, USA jmclaughl@wcupa.edu Andrew V. Sills Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA ASills@GeorgiaSouthern.edu Received:, Accepted:, Published: Abstract We provide the missing member of a family of four q-series identities related to the modulus 36, the other members having been found by Ramanujan and Slater. We examine combinatorial implications of the identities in this family, and of some of the identities we considered in Identities of the Ramanujan-Slater type related to the moduli 8 and 4, [J. Math. Anal. Appl. 344/ (008) 765 777].. Introduction The Rogers-Ramanujan identities, q j (q; q) j k k ±(mod 5) q k (.) and where q j +j (q; q) j k k ±(mod 5) q k, (.) j (a; q) j : ( aq k ) k0 were first proved by L.J. Rogers [3] in 894 and later independently rediscovered (without proof) by S. Ramanujan [, Vol II, p. 33]. Many additional q-series infinite product

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx identities were found by Ramanujan and recorded in his lost notebook [5], [6]. collection of such identities was produced by L.J. Slater [7]. A large Just as the Rogers-Ramanujan identities (.), (.) are a family of two similar identities where the infinite products are related to the modulus 5, most Rogers-Ramanujan type identities exist in a family of several similar identities where the sum sides are similar and the product sides involve some common modulus. In most cases Ramanujan and Slater found all members a given family, but in a few cases they found just one or two members of a family of four or five identities. In [], we found some missing members of families of identities related to the moduli 8 and 4 where Ramanujan and/or Slater had found one or two of the family members, as well as two new complete families. In this paper, we find the missing member in a family of four identities related to the modulus 36. We examine combinatorial implications of the identities in this family, and of some of the identities we considered in [].. Combinatorial Definitions Informally, a partition of an integer n is a representation of n as a sum of positive integers where the order of the summands is considered irrelevant. Thus the five partitions of 4 are 4 itself, 3 +, +, + +, and + + +. The summands are called the parts of the partition, and since the order of the parts is irrelevant, + +, + +, and + + are all considered to be the same partition of 4. It is often convenient to impose a canonical ordering for the parts and to separate parts with commas instead of plus signs, and so we make the following definitions: A partition λ of an integer n into l parts is an l-tuple of positive integers (λ, λ,..., λ l ) where λ i λ i+ for i l, and l λ i n. i The number of parts l l(λ) of λ is also called the length of λ. The sum of the parts of λ is called the weight of λ and is denoted λ. Thus in this notation, the five partitions of 4 are (4), (3, ), (,, ), and (,,, ). In [4], G. Andrews considers some of the implications of generalizing the notion of partition to include the possibility of some negative integers as parts. We may formalize this idea with the following definitions:

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 3 A signed partition σ of an integer n is a partition pair (π, ν) where n π ν. We may call π (resp. ν) the positive (resp. negative) subpartition of σ and π, π,..., π l(π) (resp. ν, ν,..., ν l(ν) ) the positive (resp. negative) parts of σ. Thus ((6, 3, 3, ), (4,,, )), which represents 6 + 3 + 3 + 4, is an example of a signed partition of 5. Of course, there are infinitely many unrestricted signed partitions of any integer, but when we place restrictions on how parts may appear, signed partitions arise naturally in the study of certain q-series. Remark.. Notice that the way we have defined signed partitions, the negative parts are positive numbers (which count negatively toward the weight of the signed partition), much as the imaginary part of a complex number is real. 3. Partitions and q-series Identities of Ramanujan and Slater Using ideas that originated with Euler, MacMahon [, vol. II, ch. III] and Schur [4] independently realized that (.) and (.) imply the following partition identities: Theorem 3. (First Rogers-Ramanujan identity combinatorial version). For all integers n, the number of partitions λ of n where λ i λ i+ for i l(λ) (3.3) equals the number of partitions of n into parts congruent to ± (mod 5). Theorem 3.3 (Second Rogers-Ramanujan identity combinatorial version). For all integers n, the number of partitions λ of n where and λ i λ i+ for i l(λ) (3.4) λ l(λ) >, (3.5) equals the number of partitions of n into parts congruent to ± (mod 5). When studying sets of partitions where the appearance or exclusion of parts is governed by difference conditions such as (3.3), it is often useful to introduce a second parameter a. The exponent on a indicates the length of a partition being enumerated, while the exponent on q indicates the weight of the partition.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 4 For example, it is standard to generalize (.) and (.) as follows: F (a, q) : F (a, q) : a j q j +j (q; q) j a j q j (q; q) j (aq; q) (aq; q) k0 k0 ( ) j a j q j(5j+3)/ (a; q) j ( aq j+ ) (q; q) j (3.6) ( ) j a j q j(5j )/ (a; q) j ( aq j ) ( a)(q; q) j, (3.7) where (a; q) : ( aq k ). k0 It is then easily seen that F (a, q) and F (a, q) satisfy the following system of q-difference equations: F (a, q) F (aq, q) (3.8) F (a, q) F (a, q) + aqf (aq, q). (3.9) Notice that there are straightforward combinatorial interpretations to (3.8) and (3.9). Equation (3.8) states that if we start with the collection of partitions satisfying (3.3) and add to each part (i.e. replace a by aq), then we obtain the set of partitions that satsify (3.4) and (3.5); the difference condition is maintained, but the new partitions will have no ones. The left hand side of (3.9) generates partitions that satisfy (3.3) while the right hand side segregates these partitions into two classes: those where no ones appear (generated by F (a, q)) and those where a unique one appears (generated by aqf (aq, q)). Remark 3.4. It may seem awkward to have the a-generalization of the first (resp. second) Rogers-Ramanujan identity labeled F (a, q) (resp. F (a, q)), but this is actually standard practice (see, e.g. Andrews [, Ch. 7]). Here and in certain generalizations, the subscript on F corresponds to one more than the maximum number of ones which can appear in the partitions enumerated by the function. Remark 3.5. While the a-generalizations are useful for studying the relevant partitions, the price paid for generalizing (.) to (3.7) and (.) to (3.6) is that the a-generalizations no longer have infinite product representations; only in the a cases will Jacobi s triple product identity [0, p. 5, Eq. (.6.)] allow the right hand sides of (.) and (.) to be transformed into infinite products. An exception to Remark 3.5 may be found in one of the identities in Ramanujan s lost notebook [6, Entry 5.3.9]; cf. [, Eq. (.6)]: q j (q 3 ; q 6 ) j (q; q ) j (q4 ; q 4 ) j j j (mod ) or j ±(mod ) q j. (3.0)

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 5 Equation (3.0) admits an a-generalization with an infinite product: a j q j (q 3 ; q 6 ) j (q; q ) j (aq; q ) j (q 4 ; q 4 ) j j + aq 4j + a q 8j 4 Notice that the right hand side of (3.) is easily seen to be equal to s(l, n)a l q n, n,l 0 aq j. (3.) where s(l, n) denotes the number of partitions of n into exactly l parts where no even part appears more than twice nor is divisible by 4. Note also that the right hand side of (3.0) generates partitions where parts may appear as in Schur s 96 partition theorem [5] (i.e. partitions into parts congruent to ± (mod 6)), dilated by a factor of, along with unrestricted appearances of odd parts. It is a fairly common phenomenon for a Rogers- Ramanujan type identity to generate partitions whose parts are restricted according to a well-known partition theorem, dilated by a factor of m, and where nonmultiples of m may appear without restriction. See, e.g., Connor [8] and Sills [6]. A partner to (3.0) was found by Slater [7, p. 64, Eq. (0), corrected], cf. [, Eq. (.9)]: q j +j (q 3 ; q 6 ) j (q; q ) j (q; q ) j+ (q 4 ; q 4 ) j q. (3.) j An a-generalization of (3.) is a j q j +j (q 3 ; q 6 ) j (q; q ) j (aq; q ) j+ (q 4 ; q 4 ) j j j j (mod ) or j ±4(mod ) + aq 4j + a q 8j t(l, n)a l q n, (3.3) aq j n,l 0 where t(l, n) denotes the number of partitions of n into l parts where even parts appear at most twice and are divisible by 4. Remark 3.6. An explanation as to why (3.0) and (3.) admit a-generalizations which include infinite products and (.) and (.) do not, may be found in the theory of basic hypergeometric series. The Rogers-Ramanujan identities (.) and (.) arise as limiting cases of Watson s q-analog of Whipple s theorem [8],[0, p. 43, Eq. (.5.)]; see [0, pp. 44 45,.7]. In contrast, (3.) and (3.3) are special cases of Andrews s q-analog of Bailey s F ( ) sum [, p. 56, Eq. (.9)],[0, p. 354, (Eq. II.0)]. Remark 3.7. S. Corteel and J. Lovejoy interpreted (3.0) and (3.) combinatorially using overpartitions in [9].

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 6 4. A Family of Ramanujan and Slater 4.. A long-lost relative Let us define where Q(w, x) : ( wx, x, w; w) (wx, wx ; w ), (a, a,..., a r ; w) : r (a k ; w). Then it is clear that an identity is missing from the family q j(j+) (q 3 ; q 6 ) j Q(q8, q 7 ) (Slater [7, Eq. (5)]) (4.4) (q ; q ) j+ (q; q ) j (q ; q ) k q j(j+) (q 3 ; q 6 ) j Q(q8, q 5 ) (Slater [7, Eq. (4)]) (4.5) (q ; q ) j+ (q; q ) j (q ; q ) q j (q 3 ; q 6 ) j Q(q8, q 3 ) (Ramanujan [6, Entry 5.3.4]). (4.6) (q ; q ) j (q; q ) j (q ; q ) The following identity completes the above family: q j(j+) (q 3 ; q 6 ) j Q(q8, q). (4.7) (q ; q ) j (q; q ) j+ (q ; q ) Theorem 4.8. Identity (4.7) is valid. Proof. We show that (4.5)+q (4.4) (4.7). For the series side, q j(j+) (q 3 ; q 6 ) j q j(j+) (q 3 ; q 6 ) j q j(j+) (q 3 ; q 6 ) j ( + q j+ ) + q (q ; q ) j+ (q; q ) j (q ; q ) j+ (q; q ) j (q ; q ) j+ (q; q ) j For the product side, we make use of the quintuple product identity: Hence q j(j+) (q 3 ; q 6 ) j (q ; q ) j (q; q ) j+. Q(w, x) (wx 3, w x 3, w 3 ; w 3 ) + x(wx 3, w x 3, w 3 ; w 3 ). Q(q 8, q 5 ) + qq(q 8, q 7 ) (q 33, q, q 54 ; q 54 ) + q 5 (q 3, q 5, q 54 ; q 54 ) + q((q 39, q 5, q 54 ; q 54 ) + q 7 (q 3, q 57, q 54 ; q 54 ) ) (q 33, q, q 54 ; q 54 ) + q 5 (q 3, q 5, q 54 ; q 54 ) + q((q 39, q 5, q 54 ; q 54 ) q 4 (q 5, q 3, q 54 ; q 54 ) ) (q, q 33, q 54 ; q 54 ) + q(q 5, q 39, q 54 ; q 54 ) Q(q 8, q).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 7 The result now follows. 4.. Combinatorial Interpretations We interpret (4.6) combinatorially. Theorem 4.9. The number of signed partitions σ (π, ν) of n, where l(π) is even, and each positive part is even and l(π), and the negative parts are odd, less than l(π), and may appear at most twice equals the number of (ordinary) partitions of n into parts congruent to ±, ±3, ±4, ±8 (mod 8). Proof. Starting with the left hand side of (4.6), we find q j (q 3 ; q 6 ) j (q ; q ) j (q; q ) j q j j k ( + qk + q 4k ) (q ; q ) j q j j k q4k ( + q (k ) + q (4k ) ) (q ; q ) j q j +4(++ +j) j j k ( + q (k ) + q (4k ) ) (q ; q ) j q 4j (q ; q ) j j ( + q (k ) + q (4k ) ) k Notice that (q; q) j is the generating function for partitions into at most j parts, thus j terms {}}{ q j q j + j + j + + j (q; q) j (q; q) j is the generating function for partitions into exactly j parts, where each part is at least j. Thus q 4j (q ; q ) j is the generating function for partitions into exactly j parts, each of which is even and at least j. Also, j k ( + q (k ) + q (4k ) ) is the generating function for signed partitions

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 8 into odd negative parts < j and appearing at most twice each. Summing over all j, we find that the left hand side of (4.6) is the generating function for signed partitions σ (π, ν) of n, where l(π) is even, and each positive part is even and l(π), and the negative parts are odd, less than l(π), and may appear at most twice. Now the RHS of (4.6) is Q(q 8, q 3 ) (q ; q ) ( q3, q 5 ; q 8 ; q 8 ) (q, q 4 ; q 36 ) (q ; q ) i i ±,±3,±4,±8(mod 8) q i, which is clearly the generating function for partitions into parts congruent to ±, ±3, ±4, ±8 (mod 8). Remark 4.0. Andrews provided a different combinatorial interpretation of (4.6) in [3, p. 75, Theorem ]. Following the ideas in the proof of Theorem 4.9, the analogous combinatorial interpretation of Identity (4.5) is as follows. Theorem 4.. The number of signed partitions σ (π, ν) of n, where l(π) is odd, and each positive part is even and l(π), and the negative parts are odd, less than l(π), and may appear at most twice equals the number of (ordinary) partitions of n into parts congruent to ±, ±4, ±5, ±6 (mod 8). We next interpret (4.4) combinatorially. Note that the theorem equates the number in a certain class of signed partitions of n + with the number in a certain class of regular partitions of n. Theorem 4.. The number of signed partitions σ (π, ν) of n +, where l(π) is odd, and each positive part is odd and l(π), and the negative parts are odd, less than l(π), and may appear at most twice equals the number of (ordinary) partitions of n into parts congruent to ±, ±6, ±7, ±8 (mod 8).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 9 Proof. The proof is similar to that of Theorem 4.9, except that and since it follows that q j(j+) (q 3 ; q 6 ) j (q ; q ) j+ (q; q ) j q q 4j +4j+ (q ; q ) j+ j ( + q (k ) + q (4k ) ), k 4j + 4j + (j + ) + (j + ) + + (j + ), }{{} j+ terms q 4j +4j+ (q ; q ) j+ is the generating function for partitions into exactly j + parts, each of which is odd and at least j +. Lastly, we give a combinatorial interpretation of (4.7). Theorem 4.3. The number of signed partitions σ (π, ν) of n +, where π contains an odd positive part m (which may be repeated), exactly m positive even parts, all m, and negative parts are all odd, < m, and appear at most twice, equals the number of (ordinary) partitions of n into parts congruent to ±, ±4, ±6, ±8 (mod 8). Proof. This time q j(j+) (q 3 ; q 6 ) j (q ; q ) j (q; q ) j+ q q 4j q j+ j (q ; q ) j q ( + q (k ) + q (4k ) ), j+ k so that, as before, q 4j (q ; q ) j is the generating function for partitions into exactly j parts, each of which is even and at least j, and q j+ q j+ generates partitions consisting of the part j + and containing at least one such part.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 0 5. Combinatorial Interpretations of a Family of Mod 8 Identities In [], we presented the following family of Rogers-Ramanujan-Slater type identities related to the modulus 8: q j(j+) ( ; q 3 ) j ( ; q) j (q; q) j (q, q8, q 9 ; q 9 ) (q 7, q ; q 8 ) (q; q) (5.8) q j ( ; q 3 ) j ( ; q) j (q; q) j (q, q 7, q 9 ; q 9 ) (q 5, q 3 ; q 8 ) (q; q) (5.9) q j(j+) ( q 3 ; q 3 ) j ( q; q) j (q; q) j+ (q3, q 6, q 9 ; q 9 ) (q 3, q 5 ; q 8 ) (q; q) (5.0) q j(j+) ( q 3 ; q 3 ) j (q ; q ) j (q j+ ; q) j+ (q4, q 5, q 9 ; q 9 ) (q, q 7 ; q 8 ) (q; q). (5.) We give a combinatorial interpretation of (5.). Theorem 5.4. The number of signed partitions σ (π, ν) of n +, wherein π, the largest positive part, is even, the integers,,..., π all appear an even number of times and at least twice, the integer π does not appear, the integers π +, π +,..., π all appear at least once, and there are exactly π negative parts, each (mod 3) and 3π, with the parts greater than occurring at most once equals the number of (ordinary) partitions of n into parts congruent to ±, ±3, ±6, ±7, ±8 (mod 8). Proof. We consider the general term on the left side of (5.). The factors q j(j+) ( q 3 ; q 3 ) j (q ; q ) j (q j+ ; q) j+ qj+j (q ; q ) j q (3j+3j)/ j k0 ( qj++k ) j ( + q 3k ) k q q j +j (q ; q ) j q (3j+7j+4)/ j k0 ( qj++k ) q j q j +j (q ; q ) j q+4+6+ +j (q ; q ) j j ( + q 3k ) k

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx generates parts in {, 4, 6,..., j} where each part appears at least once. Then by mapping each even part r to r + r, we have parts {,, 3,..., j} where each part appears an even number of times and at least twice. The factors q (3j +7j+4)/ j k0 ( qj++k ) q(j+)+(j+3)+ +(j+) j k0 ( qj++k ) generates partitions from the parts {j +, j + 3,..., j +, j + } and where each part appears at least once. Lastly, j q j ( + q 3k ) k is the generating function for signed partitions with negative parts that are congruent to modulo 3, 3j +, the parts greater than occur at most once, and the total number of parts is j (the number of s being j minus the number of other parts). Upon summing over j 0, we get that q j +j (q ; q ) j q (3j+7j+4)/ j k0 ( qj++k ) q j j ( + q 3k ) is the generating function for signed partitions with the properties itemized in the statement of the theorem. The right side of (5.) is (q 4, q 5, q 9 ; q 9 ) (q, q 7 ; q 8 ) (q; q) k i i ±,±3,±6,±7,±8(mod 8) q i, which is the generating function for partitions into parts congruent to ±, ±3, ±6, ±7, ±8 (mod 8). The corresponding combinatorial interpretation of (5.9) is given by the following theorem. Theorem 5.5. The number of signed partitions σ (π, ν) of n, where π, the largest positive part, is even, the integers,,..., π all appear an even number of times and at least twice, the integers π, π +,..., π all appear at least once, and there are exactly π negative parts, each (mod 3) and 3π, with the parts greater than occurring at most once,

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx equals the number of (ordinary) partitions of n into parts congruent to ±, ±3, ±4, ±6, ±8 (mod 8). Proof. The proof is similar to that of Theorem 5.4, except we rewrite the general term on the left side of (5.9) as follows q j ( ; q 3 ) j ( ; q) j (q; q) j q j q (3j 3j)/ j (q ; q ) j j k0 ( qj+k ) k ( + q 3k ) j qj q (3j+3j)/ j (q ; q ) j j k0 ( qj+k ) q j ( + q 3k ). k The identity at (5.8) may be interpreted combinatorially as follows. Theorem 5.6. The number of signed partitions σ (π, ν) of n, where π, the largest positive part, is even, the integers,,..., π all appear an even number of times and at least twice, the integers π, π +,..., π all appear at least once, and there are exactly π negative parts, each (mod 3) and 3π, with the parts greater than occurring at most once, equals the number of (ordinary) partitions of n into parts congruent to ±, ±3, ±4, ±5, ±6 (mod 8). Proof. The general term on the left side of (5.8) may be written as q j +j ( ; q 3 ) j ( ; q) j (q; q) j qj+j q (3j 3j)/ j (q ; q ) j j k0 ( qj+k ) k ( + q 3k ) j q (3j+3j)/ j qj (q ; q ) j j k0 ( qj+k ) q j ( + q 3k ). k Finally, we provide a combinatorial interpretation of (5.0) Theorem 5.7. The number of signed partitions σ (π, ν) of n +, wherein

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 3 π, the largest positive part, is odd, the integers,,..., π all appear an even number of times and at least twice, the integers π +, π +,..., π all appear at least once, and there are exactly π negative parts, each (mod 3) and 3π, with the parts greater than occurring at most once, equals the number of (ordinary) partitions of n into parts congruent to,, 4, 5, 7 or 8 modulo 9, such that for any nonnegative integer j, 9j + and 9j + do not both appear, and for any nonnegative integer k, 9k + 7 and 9k + 8 do not both appear. Proof. The general term on the left side of (5.0) may be written as q j(j+) ( q 3 ; q 3 ) j ( q; q) j (q; q) j+ q qj+j q (3j+3j)/ (q ; q ) j (q j+ ; q) j+ j ( + q 3k ) k q j +j (q ; q ) j q (3j+5j+)/ (q j+ ; q) j+ q j j ( + q 3k ), thus the interpretation of the left side is similar to that of the previous identities. The right side of (5.0) provides a challenge because of the double occurrence of the factors (q 3 ; q 8 ) and (q 5 ; q 8 ) in the numerator. Accordingly, we turn to a partition enumeration technique introduced by Andrews and Lewis. In [7, p. 79, Eq. (.) with k 9], they show that (q a+b ; q 8 ) (q a, q b ; q 9 ) (5.) is the generating function for partitions of n into parts congruent to a or b modulo 9 such that for any k, 9k + a and 9k + b do not both appear as parts, where 0 < a < b < 9. With this in mind, we immediately see that (q 3, q 6, q 9 ; q 9 ) (q 3, q 5 ; q 8 ) (q; q) generates the partitions stated in our theorem. k (q 4, q 5 ; q 9 ) (q3 ; q 8 ) (q, q ; q 9 ) (q5 ; q 8 ) (q 7, q 8 ; q 9 ) Acknowledgement We thank the referee for carefully reading the manuscript and supplying helpful comments, and the conference organizers for the opportunity to present at Integers 007.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 4 References [] G.E. Andrews, On the q-analog of Kummer s theorem and applications, Duke Math. J. 40 (973) 55 58. [] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, vol., Addison-Wesely, 976; reissued Cambridge, 998. [3] G.E. Andrews, Ramanujan s lost notebook II: ϑ-function expansions, Adv. in Math. 4 (98) 73 85. [4] G.E. Andrews, Euler s De Partitio Numerorum, Bull. Amer. Math. Soc. 44 (007) 56 574. [5] G.E. Andrews and B.C. Berndt, Ramanujan s Lost Notebook, part I, Springer, 005 [6] G.E. Andrews and B.C. Berndt, Ramanujan s Lost Notebook, part II, Springer, 008. [7] G.E. Andrews and R. Lewis, An algebraic identity of F.H. Jackson and its implications for partitions, Discrete Math. 3 (00) 77 83. [8] W.G. Connor, Partition theorems related to some identities of Rogers and Watson, Trans. Amer. Math. Soc. 4 (975) 95. [9] S. Corteel and J. Lovejoy, Overpartitions and the q-bailey identity, Proc. Edinburgh Math. Soc., to appear. [0] G. Gasper and M. Rahman, Basic Hypergeometric Series, nd ed., Cambridge, 004. [] J. Mc Laughlin and A.V. Sills, Identities of the Ramanujan-Slater type related to the moduli 8 and 4, J. Math. Anal. Appl. 344/ (008) 765 777. [] P.A. MacMahon, Combinatory Analysis, vols., Cambridge, 95 96. Reprinted: Chelsea, 960. [3] L.J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 5 (894) 38 343. [4] I. Schur, Ein Beitrag zur additeiven Zahlentheorie und zur Theorie der Kettenbrüche, Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. (97) 30 3. [5] I. Schur, Zur additiven Zahlentheorie, Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. (96) 488 495. [6] A.V. Sills, Identities of the Rogers-Ramanujan-Slater type, Int. J. Number Theory 3 (007) 93 33.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (00x), #Axx 5 [7] L.J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. () 54 (95) 47 67. [8] G.N. Watson, A new proof of the Rogers-Ramanujan identities, J. London Math. Soc. 4 (99) 4 9.