The Si-doped planar tetracoordinate carbon (ptc) unit CAl 3 Si could be. used as a building block or inorganic ligand during cluster-assembly

Similar documents
A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Supplementary information

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Aluminum Siting in the ZSM-5 Framework by Combination of

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Supporting Information

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

SUPPORTING INFORMATION

Supporting Information

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Electronic Supplementary information

Supporting Information

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion

Tetracoordinated Planar Carbon in the Al 4 C - Anion. A Combined Photoelectron Spectroscopy and ab Initio Study

Supplemental Material

University of Groningen

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate

Electronic Supplementary Information (ESI) for Chem. Commun.

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters.

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Supporting Information

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

Supporting Information

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

China; University of Science and Technology, Nanjing , P R China.

A theoretical study on the thermodynamic parameters for some imidazolium crystals

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

A Computational Model for the Dimerization of Allene: Supporting Information

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

Computational Material Science Part II

Electronic Supplementary Information for:

Supporting Information

Supplementary Material

(1) 2. Thermochemical calculations [2,3]

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Supporting Information

Supporting Information For

Supporting information on. Singlet Diradical Character from Experiment

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks

Preprint. This is the submitted version of a paper published in Journal of Computational Chemistry.

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand.

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Analysis of Permanent Electric Dipole Moments of Aliphatic Amines.

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Supporting Information. A rare three-coordinated zinc cluster-organic framework

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Supporting information

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

SUPPLEMENTARY INFORMATION

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ Том 51, 2 Март апрель С

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Supporting Information

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

Diphosphene Photobehaviour

Medical University of Warsaw, Faculty of Pharmacy, 1 Banacha St., Warszawa, Poland 2

Supporting Information

Ab Initio and Density Functional Study

Dynamics of H-atom loss in adenine: Supplementary information

Supporting Information

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes)

DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR ALCOHOL: THE ROLE OF CATALYST

Supporting Information

SUPPORTING INFORMATION. Modeling the Peroxide/Superoxide Continuum in 1:1 Side-on Adducts of O 2 with Cu

Which NICS Aromaticity Index for Planar π Rings is Best?

Supporting Information

The Chemist Journal of the American Institute of Chemists

Supporting Information

Tuning the electron transport band gap of bovine serum. albumin by doping with Vb12

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Theoretical Study of the Reaction Mechanism for SiF 2 Radical with HNCO

Supporting Information

Supplementary Information:

Supporting Information

Supporting Information

A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media

SUPPLEMENTARY INFORMATION

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge.

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Supporting Information (Part 1) for

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Pyrogallol[4]arenes as frustrated organic solids

Nucleophilicity Evaluation for Primary and Secondary Amines

Driving forces for the self-assembly of graphene oxide on organic monolayers

Transcription:

The Si-doped planar tetracoordinate carbon (ptc) unit CAl 3 Si could be used as a building block or inorganic ligand during cluster-assembly Supporting Information. Li-ming Yang, Yi-hong Ding*, Chia-chung Sun State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People s Republic of China (E-mail: yhdd@mail.jlu.edu.cn; Fax: +86-431-8498026) Full citations for ref 81: 81. Gaussian03 (RevisionA.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2003. Some references on ptc and related species are listed as follows: 11. (a) Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419. (b) Cotton, F. A.; Millar, M. J. Am. Chem. Soc. 1977, 99, 7886. (c)erker, G.; Wicher, J.; Engel, K.; Resenfeldt, F.; Dietrich, W.; Kruger, C. J. Am. Chem. Soc. 1980, 102, 6344. (d) Keese, R. Nachr. Chem. Tech. Lab. 1982, 30, 844. (e) Stahl, D.; Maquin, F.; Gaumann, T.; Schwarz, H.; Carrupt, P.-A.; Vogel, P. J. Am. Chem. Soc. 1985, 107, 5049. (f)mcgrath, M. P.; Radom, L. J. Am. Chem. Soc. 1992, 114, 8531. (g) Luef, W.; Keese, R. Adv. Strain. Org. Chem. 1993, 3, 229. (h) Rottger, D.; Erker, G.; Frohlich, R.;

Grehl, M.; Silverio, S. J.; Hyla-Kryspin, I.; Gleiter, R. J. Am. Chem. Soc. 1995, 117, 10503. (i)sorger, K.; Schleyer, P. v. R.; Fleischer, R.; Stalke, D. J. Am. Chem. Soc. 1996; 118(29); 6924-6933. (j) Sorger, K.; Schleyer, P. v. R.; Stalke, D. J. Am. Chem. Soc. 1996, 118, 1086. (k) Hyla-Kryspin, I.; Gleiter, R.; Romer, M.-M.; Deveny, J.; Gunale, A.; Pritzkow, H.; Siebert, W. Chemistry 1997, 2, 294. Additional references on TPC before year 1995. S1. Krogh-Jesperson, M. B.; Cremer, D.; Poppinger, D.; Pople, J. A.; Schleyer, P. v. R.; Chandrasekhar, J. J. Am. Chem. Soc. 1979, 101, 4843. S2. Wurthwein, E.-U.; Schleyer, P.v.R. Angew. Chem. Int. Ed. 1979, 18, 553. S3. Krogh-Jesperson, M. B.; Chandrasekhar, J.; Wurthwein, E. U.; Collins, J. B.; Schleyer, P. v. R. J. Am. Chem. Soc. 1980, 102, 2263. S4. Chadrasekhar, J.; Wurthwein, E. U.; Schleyer, P. v. R. Tetrahedron 1981, 37, 921. S5. Wurthwein, E. U.; Chadrasekhar, J.; Jemmis, E. D.; Schleyer, P. v. R. Tetrahedron Lett. 1981, 22, 843. S6. Chandrasekhar, J.; Schleyer, P. v. R. J. Chem. Soc. Chem. Commun. 1981, 260. S7. Schleyer, P. v. R. Pure Appl. Chem. 1983, 55, 355; S8. Schleyer, P. v. R. Pure Appl. Chem. 1984, 56, 151. S9. Schleyer, P. v. R.; Clark, T.; Kos, A. J.; Spitznagel, G. W.; Rohde, C.; Arad, D.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. 1984, 106, 6467 S10. Setzer, W. N.; Schleyer, P. v. R. Adv. Organomet. Chem. 1985, 24, 353. S11. Sapse, A.-M.; Raghavachari, K.; Schleyer, P. v. R.; Kaufmann, E. J. Am. Chem. Soc. 1985, 107, 6483. S12. Schleyer, P. v. R.; Kaufmann, E.; Spitznagel, G. W.; Janoschek, R.; Winkelhofer, G. Organometallics 1986, 5, 79. S13. Bauer, W.; Winchester, W. R.; Schleyer, P. v. R. Organometallics 1987, 6, 2371. S14. Geissler, M.; Kopf, J.; Schubert, B.; Weiss, E.; Neugebauer, W.; Schleyer. P. v. R. Angew. Chem. 1987, 99, 569; Angew. Chem. Int. Ed. Engl. 1987, 26, 587. S15. Kaufmann, E.; Raghavachari, K.; Reed, A. E.; Schleyer, P. v. R. Organometallics 1988, 7, 1597. S16. Bauer, W.; Klusener, P. A. A.; Harder, S.; Kanters, J. A.; Duisenberg, A. J. M.;

Brandsma, L.; Schleyer, P. v. R. Organometallics 1988, 7, 552. S17. Harder, S.; Boersma, J.; Brandsma, L.; van Heteren A.; Kanters, J. A.; Bauer, W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1988, 110, 7802. S18. Bauer, W; Schleyer, P. v. R. J. Am. Chem. Soc. 1989, 111, 7191 S19. Gregory, K.; Schleyer, P. v. R.; Snaith, R. Adv. Inorg. Chem. 1991, 37, 47. S20. Lambert, C.; Schleyer, P. v. R. Angew. Chem. 1994, 106, 1187; Angew. Chem. Int. Ed. Engl. 1994, 33, 1129. S21. Preliminary communication: Sorger, K.; Schleyer, P. v. R.; Stalke, D. J. Chem. Soc, Chem. Commun. 1995, 2279. S22. Wiberg, K.; Hiatt, J. E.; Burgmaier, G. Tetrahedron Lett. 1968, 5855. S23. Wiberg, K. B.; Elison, G. B.; Wendolski, J. J. J. Am. Chem. Soc. 1976, 98, 1212. S22. Laidig, W. D.; Schaefer, H. F., III J. Am. Chem. Soc. 1978, 100, 5972. S24. Wiberg, K. B.; Odonnell, J. Am. Chem. Soc. 1979, 101, 6660. S25. Bohm, M. C.; Gleiter, R.; Schlang, P. Tetrahedron Lett. 1979, 2675. S26. Keese, R.; Pfenninger, A.; Roesle, A. Helv. Chim. Acta 1979, 62, 326. S27. Wiberg, K. B.; Olli, L. K.; Golembeski, N.; Adams, R. D. J. Am. Chem. Soc. 1980, 102, 7467. S28. Schori, H.; Patil, B. B.; Keese, R. Tetrahedron 1981, 37, 4457. S29. Wiberg, K. B.; Wendoloski, J. J. J. Am. Chem. Soc. 1982, 104, 5679. S30. Cotton, F. A.; Lewis, G. F.; Mott, G. N. Inorg. Chem. 1983, 22, 560. S31. Bachrach, S. M.; Streitweiser, A., Jr. J. Am. Chem. Soc. 1984, 106, 5818. S32. Frenking, G. Chem. Phys. Lett. 1984, 111, 529. S33. Wiberg, K. B. Tetrahedron Lett. 1985, 26, 5967. S34. Dodziuk, H. Bull. Chem. Soc. Jpn. 1987, 60, 3775. S35. Glukhovtsev, M. N.; Simkin, B. Ya.; Minkin, V. I. J. Org. Chem. USSR 1990, 26, 1933. S36. Dodziuk, H. J. Mol. Struct. 1990, 239, 167. S37. Glukhovtsev, M. N.; Simkin, B. Ya.; Minkin, V. I. J. Org. Chem. USSR 1991, 27, 1. S38. Erker, G.; Albrecht, M.; Kruger, C.; Wener, S. Organometallics 1991, 10, 3791. S39. Thommen, M.; Gerber, P.; Keese, R. Chimia 1991, 45, 21. S40. Luef, W.; Keese, R. J. Mol. Struct. (THEOCHEM) 1992, 257, 353.

S41. McGrath, M. P.; Schaefer, H. F., III; Radom, L. J. Org. Chem. 1992, 57, 4847. S42. Albrecht, M.; Erker, G.; Notle, M.; Kruger, C. J. Organomet. Chem. 1992, 427, C21. S43. Erker, G.; Albrecht, M.; Wener, S.; Notle, M.; Wener, S.; Binger, P.; Langhauser, F. Organometallics 1992, 11, 3517. S44. Erker, G.; Albrecht, M.; Kruger, C.; Wener, S. J. Am. Chem. Soc. 1992, 114, 8531. S45. Gleiter, R.; Hyla-Kryspin, I.; Niu, S.; Erker, G. Angew. Chem. Int. Ed. Engl. 1993, 32, 754. S46. McGrath, M. P.; Radom, L. J. Am. Chem. Soc. 1993, 115, 3320. S47. Poumbga, C. N.; Bernar, M.; Hyla-Kryspin, I. J. Am. Chem. Soc. 1994, 116, 8259. S48.Glukhovtsev, M. N.; Pross. A.; Radom, L. J. Am. Chem. Soc. 1994, 116, 5961. S49. Nakajima, A.; Taguwa, T.; Nakao, K.; Hoshino, K.; Iwata, S.; Kaya, K. J. Chem. Phys. 1995, 102, 660.

Note1. An imaginary frequency indicates the existence of a vibrational mode that is dynamically unstable and leads to a more stable structure. Transition states of a chemical reaction are saddle points exhibiting only one imaginary frequency. Saddle points with more dynamical systems with sufficiently high vibrational energy but are generally not of chemical significance. In this report, NIMAG means the number of imaginary frequency of saddle point. [Note1] m N q : m means spin electron state (singlet, triplet), N means the sequence number of various isomers, superscript q means the charge of the total system. Figure 1 Schematic energy profile for singlet 1 [C 2 Si 2 Al 6 M] q : a) (M,q)=(Li,1); b) (M,q)=(Na,1); c) (M,q)=(K,1); d) (M,q)=(Be,0); e) (M,q)=(Mg,0); f) (M,q)=(Ca,0) calculated at the B3LYP/6-311+G(d) level. Energy values are in kcal/mol. NIMAG means the number of imaginary frequency of saddle point. m N q : m means spin electron state, N represents the sequence number of various isomers, superscript q means the charge of the total system. For simplicity, the notations Ho-Li, Ho-Na Ho-K Ho-Be Ho-Mg and Ho-Ca for isomers are omitted.

1 1 (s-s-90-1) 1 1 (s-s-90-2) 1.81 1 1 (s-s-90-3) 3.64 1 1 (s-c-90-3) 5.10 1 1 (s-s-0-1) 1.63 1 1 (s-s-0-2) 1.66 1 1 (s-s-0-3) 5.83 1 1 (s-c-0-1) 2.92 1 1 (s-c-0-2) 2.94 1 1 (s-c-0-3) 4.80 1 1 (s-c-0-4) 4.85 1 1 (c-c-90-1) 4.95 1 1 (c-c-90-2) 8.21 1 1 (c-c-0-1) 5.14 1 1 (c-c-0-2) 6.17 1 1 (c-c-0-3) 7.22 1 1 (c-c-0-4) (NIMAG=2) 9.69 1 1 (c-c-0-5) (NIMAG=3) 12.50 1 1 (c-c-90-3) (NIMAG=2) 11.77 1 1 (f-f-0-1) 11.90 1 2-15.20 1 3-13.78 1 4-13.78 1 5-7.65 1 6-3.90 1 7-2.65

1 8-2.42 1 9-1.66 1 10-1.54 1 11-0.54 1 12-0.26 1 13-0.12 1 14 0.04 1 15 0.10 1 16 0.15 1 17 1.24 1 18 1.37 1 19 1.48 1 20 1.49 1 21 1.56 1 22 1.77 1 23 2.38 1 24 2.59 1 25 3.77 1 26 4.38 1 27 5.58 1 28 1 29 7.89 8.28 a) 1 [C 2 Si 2 Al 6 Li] 1 30 12.12 1 31 (s-c-0-1) 10.67

1 1 (s-s-90-1) 1 1 (s-s-90-2) 0.76 1 1 (s-s-90-3) 1.54 1 1 (c-c-90) 5.83 1 1 (f-f-0) 14.05 1 1 (s-s-0) 2.72 1 1 (s-c-0) 2.11 1 1 (c-c-0) 3.99 1 1 (s-c-90) 5.88 1 1 (c-c-0-5) (NIMAG=2) 8.81 1 1 (c-c-90-1) (NIMAG=2) 11.55 1 1 (c-c-0-1) (NIMAG=3) 11.92 1 2-9.62 1 3-5.01 1 4-1.66 1 5 0.29 1 6 0.77 1 7 1.89 1 8 2.13 1 9 6.02 1 10 9.99 1 11 16.26 b) 1 [C 2 Si 2 Al 6 Na]

1 1 (s-s-90-1) 1 1 (s-s-90-2) 0.20 1 1 (s-s-0) 0.50 1 1 (s-s-0) 0.83 1 1 (s-s-0) 0.83 1 1 (s-c-90) 3.97 1 1 (c-c-0-2) (NIMAG=3) 6.03 1 1 (c-c-0-5) (NIMAG=3) 7.33 1 1 (c-c-90-1) (NIMAG=2) 8.48 1 1 (f-f-0) 11.58 1 2-12.66 1 3-10.58 1 4 0.56 1 5 6.33 1 6 11.30 1 7 17.58 c) 1 [C 2 Si 2 Al 6 K]

1 1(s-s-90-1) 8.35 12.38 16.03 1 1(s-c-0) 11.25 1 1(s-c-0) 11.35 1 1(s-c-0) 15.00 1 1(s-c-0) 15.07 1 1(s-c-90-1) 15.10 1 1(s-c-90-2) 18.16 1 1(c-c-0-2) (NIMAG=3) 29.98 1 1(c-c-0-5) (NIMAG=3) 35.94 1 1(c-c-90-1) (NIMAG=2) 37.47 1 1(c-c-0-1) (NIMAG=7) 111.51 1 2-28.93 1 3-28.78 1 4-27.94 1 5-27.24 1 6-25.19 1 7-23.86 1 8-19.06 1 9-18.65 1 10-17.36 1 11-17.30 1 12-16.43 1 13-16.42 1 14-16.23 1 15-16.11 1 16-15.95 1 17-15.29 1 18-14.04 1 19-13.71 1 20-8.07 1 21-6.00 1 22-6.00 1 23-0.58 1 24 2.90 d) 1 [C 2 Si 2 Al 6 Be]

1 1(s-s-90-1) 1 1(s-s-90-2) 1 1(s-s-90-3) 0.91 1.85 2.79 2.79 4.39 6.11 6.17 1 1(c-c-0-2) (NIMAG=3) 24.91 1 1(c-c-0-5) (NIMAG=3) 32.75 1 1(c-c-90-1) (NIMAG=2) 40.47 1 2-10.83 1 3-2.71 1 4-0.94 1 5-0.34 1 6 2.20 1 7 2.25 1 8 4.60 1 9 4.65 1 10 5.57 1 11 6.13 1 12 6.27 1 13 10.28 1 14 12.46 1 15 13.28 1 16 13.75 e) 1 [C 2 Si 2 Al 6 Mg]

1 1(s-s-90-1) 1 1(s-s-90-2) 0.08 1.38 1.39 1.39 1.42 1.66 1.67 1 1(c-c-0-2) (NIMAG=3) 26.37 1 1(c-c-0-5) (NIMAG=3) 27.93 1 1(c-c-90-1) (NIMAG=2) 29.33 1 2-25.95 1 3-19.29 1 4-16.52 1 5-13.51 1 6-10.71 1 7-8.79 1 8-8.78 1 9-5.32 1 10-2.10 1 11-1.11 f) 1 [C 2 Si 2 Al 6 Ca]

Figure 2 Most relevant species of [C 2 Si 2 Al 6 M 2 ] (M=Li, Na, K) at the B3LYP/6-311+G(d) level. Energy values are in kcal/mol. NIMAG means the number of imaginary frequency of saddle point. m N q : m means spin electron state, N represents the sequence number of various isomers, superscript q means the charge of the total system. "f-f" stands for face-to-face sandwich form, "f-s" stands for face-to-side sandwich form, "f-c" stands for face-to-corner sandwich form. For simplicity, the notations Ho-Li, Ho-Na Ho-K for isomers are omitted, and we only listed the sandwich-like and low-lying isomers, all the other isomers are found in SI. 1 1(s-s-0-1) 1 1(s-s-0-2) 0.70 1 1(s-s-0-3) 0.79 1 1(s-s-0-4) 1.14 1 1(s-s-0-5) 1.24 1 1(s-s-0-6) 1.32 1 1(s-s-0-7) 5.00 1 1(s-c-90-1) 18.06 1 1(s-c-90-2) 18.58 1 1(s-c-0) 17.78 1 1(s-c-0) 19.30 1 1(s-c-0) 23.84 1 1(s-c-0) 24.51 18.79 18.81 1 1(s-c-0) 17.31 1 1(s-c-0) 17.81 19.20 20.17 18.47 1 1(c-c-90-1) (NIMAG=4) 35.89 1 1(c-c-0-2) (NIMAG=3) 37.01 1 1(c-c-90-1) (NIMAG=4) 38.70

1 2-13.94 1 3-11.48 1 4-10.33 1 5-10.32 1 6-9.79 1 7-9.49 1 8-8.45 1 9-7.99 1 10-7.51 1 11-7.15 1 12-6.81 1 13-6.57 1 14-5.78 1 15-5.51 1 16-3.49 1 17-2.08 1 18 1.52 1 20 2.93 1 21 3.70 1 22 7.85 1 23 10.01 1 24 10.20 a) 1 C 2 Si 2 Al 6 Li 2

1 1(s-s-0-1) 1 1(s-s-0-2) 0.06 1 1(s-s-0-4) 0.42 1 1(s-s-0-6) 0.43 1 1(s-s-0-3) 0.97 1 1(s-s-0-5) 1.68 1 1(s-c-0) 14.51 1 1(c-c-0-1) (NIMAG=4) 29.61 1 1(c-c-0-2) (NIMAG=3) 32.33 1 2-10.93 1 3-8.75 1 4-7.59 1 5-3.24 1 6-2.29 1 7-0.91 1 8-0.42 1 9 3.69 1 10 5.93 1 11 10.06 1 12 11.09 1 13 20.66 b) 1 [C 2 Si 2 Al 6 Na 2 ] 1 14 23.15

1 1(s-s-0-1) 1 1(s-s-0-2) 0.46 1 1(s-s-0-4) 0.13 1 1(s-s-0-6) 0.19 1 1(s-s-0-3) 0.84 1 1(s-s-0-5) 11.72 1 1(c-c-0-1) (NIMAG=4) 24.59 1 1(c-c-0-1) (NIMAG=4) 25.44 1 1(c-c-0-1) (NIMAG=4) 26.16 1 2-16.04 1 3-12.09 1 4-7.91 1 5-7.32 1 6-4.51 1 7-3.85 1 8-2.93 1 9 2 1 10 20.70 c) 1 [C 2 Si 2 Al 6 K 2 ]

Figure 3. Schematic energy profile for singlet hetero-decked compounds 1 [CpM(CAl 3 Si)] q : a) (M,q)=(Li,1); b) (M,q)=(Na,1); c) (M,q)=(K,1); d) (M,q)=(Be,0); e) (M,q)=(Mg,0); f) (M,q)=(Ca,0) calculated at the B3LYP/6-311+G(d) level. Energy values are in kcal/mol. "f-f" stands for face-to-face sandwich form, "f-s" stands for face-to-side sandwich form, "f-c" stands for face-to-corner sandwich form. For simplicity, the notations Het-Li, Het-Na Het-K Het-Be Het-Mg and Het-Ca for isomers are omitted. 1 1(f-c-1) 1 1(f-s) 1 1(f-c-2) 1 1(f-f) 1 2 1 3 0.16 0.44 1.45 17.91 18.37 1 4 1 5 1 6 1 7 1 8 1 9 21.09 21.73 21.79 23.79 25.85 26.37 1 10 34.70 1 11 38.57 1 12 39.63 1 13 39.63 1 14 42.31

1 15 1 16 1 17 1 18 1 19 43.82 44.89 45.46 46.54 48.53 1 20 1 21 1 22 1 23 53.52 56.06 56.27 64.30 1 24 69.51 1 25 1 26 73.91 98.03 a) 1 [CpLi(CAl 3 Si)] 1 27 99.18

1 1(f-s) 1 1(f-c) 0.66 1 1(f-c) 1.30 1 1(f-f) 4.65 19.80 20.45 22.13 22.50 22.68 22.73 24.26 25.29 27.89 31.50 31.85 34.44 35.15 44.77 48.17 b) 1 [CpNa(CAl 3 Si)]

1 1(f-s-1) 1 1(f-s-1) 0.37 1 1(f-f) 4.45 1 2 20.04 1 3 1 4 21.32 22.28 c) 1 [CpK(CAl 3 Si)] 1 5 23.72

1 1(f-c) 1 1(f-f) 0.27 1 1(f-s) 2.17 6.83 8.94 11.74 16.33 18.08 18.99 19.59 20.08 20.72 21.38 24.98 26.93 29.08 37.55 37.69 38.91 38.98 39.06 39.86 41.51 42.84 43.53 45.21 45.79 46.29

47.71 52.13 52.64 54.19 54.84 55.26 55.54 56.35 61.59 62.43 67.03 67.40 69.11 72.25 72.44 72.83 74.92 77.67 80.27 80.86 87.38 96.83 100.38 107.70 133.08 d) 1 [CpBe(CAl 3 Si)]

1 1(f-s-1) 1 1(f-s-1) 1.62 1 1(f-f) 11.10 14.86 14.97 16.21 17.32 25.54 24.70 26.22 e) 1 [CpMg(CAl 3 Si)] 1 1(f-s-1) 1 1(f-s-1) 0.03 1 1(f-f) 8.36 1 2 11.79 1 3 12.24 1 4 16.88 1 5 30.67 1 6 41.64 1 7 45.46 f) 1 [CpCa(CAl 3 Si)]

Figure 3. Schematic energy profile for singlet saturated hetero-decked compounds 1 (Li) + [CpM(CAl 3 Si)] (M=Li, Na, K) calculated at the B3LYP/6-311+G(d) level. Energy values are in kcal/mol. For simplicity, the notations Het-Li, Het-Na Het-K for isomers are omitted. 0.43 1.16 1.16 1.32 2.60 14.33 14.84 15.46 15.54 0.05 1.61 1.71 2.22 5.09 5.40 7.18 7.94 8.09 8.60 8.76 9.11 9.15 9.67 26.85 27.90

1.18 2.65 3.16 3.67 7.33

Figure 3. Various extend species were designed and obtained as energy minima, they were calculated at the B3LYP/6-311+G(d) level. Energy values are in kcal/mol. Fig 3 display extend species of alkali-metal: [CpM(CAl 3 Si)MCp] q (M=Li, Na, K, q=+1; M=Be, Mg, Ca, q=-1). 0.13 0.28 0.75 0.79 0.84 0.88