Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Similar documents
Quantum impurities in a bosonic bath

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

(r) 2.0 E N 1.0

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Entanglement spectra in the NRG

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Solution of the Anderson impurity model via the functional renormalization group

Numerical renormalization group method for quantum impurity systems

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Numerical renormalization group method for quantum impurity systems

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Lecture 2: Open quantum systems

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Microscopic structure of entanglement in the many-body environment of a qubit

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

Universal Post-quench Dynamics at a Quantum Critical Point

Numerical renormalization group and multi-orbital Kondo physics

Classical and quantum simulation of dissipative quantum many-body systems

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Coherence by elevated temperature

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

Kondo satellites in photoemission spectra of heavy fermion compounds

Iterative real-time path integral approach to nonequilibrium quantum transport

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Finite-frequency Matsubara FRG for the SIAM

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Open and Reduced Wilson Chains for Quantum Impurity Models

Real-Space RG for dynamics of random spin chains and many-body localization

Numerical Renormalization Group for Quantum Impurities 1

Introduction to Theory of Mesoscopic Systems

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Typical quantum states at finite temperature

Present and future prospects of the (functional) renormalization group

5 Numerical renormalization group and multiorbital

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Fate of the Kondo impurity in a superconducting medium

The bosonic Kondo effect:

Decoherence in molecular magnets: Fe 8 and Mn 12

Intermediate valence in Yb Intermetallic compounds

PCE STAMP. Physics & Astronomy UBC Vancouver. Pacific Institute for Theoretical Physics

arxiv: v2 [cond-mat.str-el] 7 Sep 2010

Entanglement in Many-Body Fermion Systems

Fabian Essler (Oxford)

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

Transport Coefficients of the Anderson Model via the numerical renormalization group

Evidence of anisotropic Kondo coupling in nanostructured devices

Dynamic properties of interacting bosons and magnons

Numerical methods out of equilibrium -Threelectures-

Effet Kondo dans les nanostructures: Morceaux choisis

Currents through Quantum dots. Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 29/02/2016

Thermalization in Quantum Systems

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

arxiv: v3 [cond-mat.stat-mech] 7 Jan 2015

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Diagrammatic Monte Carlo methods for Fermions

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model

From unitary dynamics to statistical mechanics in isolated quantum systems

The density matrix renormalization group and tensor network methods

S.K. Saikin May 22, Lecture 13

Charges and Spins in Quantum Dots

Magnetic Moment Collapse drives Mott transition in MnO

Cluster Extensions to the Dynamical Mean-Field Theory

Hopping transport in disordered solids

High-Temperature Criticality in Strongly Constrained Quantum Systems

Kondo Effect in Nanostructures

Time-dependent DMRG:

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

What is thermal equilibrium and how do we get there?

1 Wilson s Numerical Renormalization Group

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

NON-EQUILIBRIUM DYNAMICS IN

Curriculum Vitae. Ning-Hua Tong

Quantum spin systems - models and computational methods

Aditi Mitra New York University

Exotic Kondo effects in nanostructures

2.1 Green Functions in Quantum Mechanics

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Feb 1998

Decoherence and Thermalization of Quantum Spin Systems

A theoretical study of the single-molecule transistor

Impurity-Induced States in 2DEG and d-wave Superconductors

Thermodynamical cost of accuracy and stability of information processing

Dimerized & frustrated spin chains. Application to copper-germanate

NANOSCALE SCIENCE & TECHNOLOGY

Complexity of the quantum adiabatic algorithm

Quantum many-body systems and tensor networks: simulation methods and applications

The Postulates of Quantum Mechanics

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Transcription:

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation, Hvar, 30. September 2005 Collaborator: A. Schiller, Hebrew University, Jerusalem, Israel R. Bulla, S. Tornow, University of Augsburg, Germany M. Vojta, University of Karlsruhe, Germany Concepts in Electron Correlation, Hvar, 30/9/2005 p.1/18

What is a Quantum-Impurity System (QIS)? Quantum Impurity α> γ> (metallic) host bosonic bath quantum-impurity: Problem: embedded in a (metallic) host interacting with the environment of non-interacting particles (Bosons/Fermions) infrared divergence due to local degeneracy Concepts in Electron Correlation, Hvar, 30/9/2005 p.2/18

What is a Quantum-Impurity System (QIS)? Quantum Impurity α> γ> (metallic) host bosonic bath Examples: transition metal ion Cu, Mn, Ce in a metal two-level system (Qubit) in a bosonic bath Quantum dot coupled to leads donor-acceptor centers of a large bio-molecule Concepts in Electron Correlation, Hvar, 30/9/2005 p.2/18

Goal of the Talk Our new Approach to Non-Equilibrium of QIS: based on the non-perturbative NRG uses the complete basis of the many body Fock space takes into account all energy scales describes short and long time scales does not accummulate an error t as the TD-DMRG breakthrough in the description of real time dynamics of non-equilibrium quantum systems: Concepts in Electron Correlation, Hvar, 30/9/2005 p.3/18

Contents 1. Introduction Modelling of quantum dots Charge transfer in molecules (spin-boson model) 2. Non-equilibrium dynamics Time evolution of quantum systems New approach to quantum impurity problems 3. Results Dissipation and decoherence in a two level system Spin- and charge dynamics in ulta-small quantum dots AF-Kondo model spin precession 4. Summary and outlook Concepts in Electron Correlation, Hvar, 30/9/2005 p.4/18

Modelling of a Quantum Dot H = kσ ǫ kσ c kσ c kσ + σ [E d σh]d σd σ + Un d n d + kσ ) V (c kσ d σ + d σc kσ Single Impurity Anderson Model (SIAM) charge fluctuation scale: Γ i = V 2 i πρ F infrared problem low temperature scale: T K exp( πu/8γ) Concepts in Electron Correlation, Hvar, 30/9/2005 p.5/18

Spin-Boson Model qubit plus environment (Unruh) electron transfer in (bio)-molecules (Marcus, Schulten) = A, = D H = ǫσ z 2 σ x + q ω q b ( ) qb q + σ z M q b q + b q q J(ω) = q M q 2 δ(ω ω q ) 2παωc 1 s ω s Leggett et. al. (RMP 1987), Xu and Schulten 1994, Bulla et. al. (2003) Questions: influence of the bosonic spectrum J(ω) on the real time dynamics critical slowdown of the charge transfer process for large coupling Concepts in Electron Correlation, Hvar, 30/9/2005 p.6/18

Where do we stand in the description of non-equilibrium, dissipation and decoherence in quantum systems? Concepts in Electron Correlation, Hvar, 30/9/2005 p.7/18

Non-Equilibrium Dynamics of Quantum Systems quantum dynamics single quantum state: Schrödinger equation i t ψ >= H ψ > ensemble: density operator i tˆρ = [H, ˆρ] ; ρ = e iht/ ρ 0 e iht/ finite size quantum system: only unitary dynamics, no dissipation dissipation and decoherence: infinitly large environment needed Size of Subsystem Size of environment Subsystem 0 Environment Concepts in Electron Correlation, Hvar, 30/9/2005 p.8/18

NRG Approach to Quantum Impurity Problems H = H imp + H bath + H imp bath 1. discretizing the bath Hamiltonian on a logarithmic energy mesh (Wilson 1975,Oliveira ) 0 z (z+1) (z+1) z Λ Λ Λ 0 Λ Λ Λ 0 2. mapping onto a semi-infinite chain impurity t 0 t 1 t m 1 t m+1 t N 1 H m R m,n 3. diagonalizing the Hamiltonian H N+1 using the recursion H N+1 = ΛH N + ) ξ Nα (f N+1α f Nα + f Nα f N+1α α 4. truncate the basis set, go back to step 3 Concepts in Electron Correlation, Hvar, 30/9/2005 p.9/18

Novel Many-Body Approach to NEQ of QIS impurity t 0 t 1 t m 1 t m+1 t N 1 H m R m,n Subsystem Environment use the NRG to generate a complete basis l, e; m H m l = E m l l, l eliminated state e R m,n 1 = m l, e; m l, e; m l,e Puls at t = 0: H = H i Θ( t) + H f Θ operator Ô: property of the subsystem S Concepts in Electron Correlation, Hvar, 30/9/2005 p.10/18

Novel Many-Body Approach to NEQ of QIS time-dependent NRG (TD-NRG) (FBA, A. Schiller, cond-mat/0505553, PRL 2005) calculate ρ red NEQ ] [ρô Ô = Tr = α Ô α ρ red αα,m m,αα Subsystem Environment ρ red αα,m = e i(e α E α )t e α,e; m ρ eq α, e; m Feynman 1972, White 1992, Hofstetter 2000, mimic bath contiuum: use Oliveira s z-trick evolves towards the new steady state: [H(t > 0), ρ( )] = 0 Trace over the environment: dissipation and decoherence! Concepts in Electron Correlation, Hvar, 30/9/2005 p.10/18

Spin-Boson Model H = ǫσ z 2 σ x + q ω q b ( ) qb q + σ z M q b q + b q q S x = 1 2 ( + ) Decoherence N s =150, N z =16, N b =8, N iter =14, T=0.0078125, Λ=2 1/2, α damp =0.1, α=0.1, ε=0, 0 =0.,ω c =1 QuBit state S x 0.5 0.4 0.3 s=1.5 s=1.5 (ana.) s=1.0 s=0.8 s=0.6 s=0.4 s=0.2 1 2 ( + ) exact solution 0.2 0.1 P = e Γ 0 0.001 0.01 0.1 1 10 Mon Sep 19 11:46:59 2005 t*t Leggett et al., Unruh, Palma et al., Bulla et al. Concepts in Electron Correlation, Hvar, 30/9/2005 p.11/18

Spin-Boson Model H = ǫσ z 2 σ x + q ω q b ( ) qb q + σ z M q b q + b q q J(ω) = 2παω 1 s c ω s for 0 < ω < ω c ; Ohmic case: s = 1 Fixed point: delocalized localized 0<α<1/2 oszillatory Toulouse Point: 1/2<α<α( ) c overdamped α( ) c < α α=1/2 Concepts in Electron Correlation, Hvar, 30/9/2005 p.11/18

Spin-Boson Model H = ǫσ z 2 σ x + q ω q b ( ) qb q + σ z M q b q + b q q S z 0.5 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3-0.4 N s =100, N b =8, N iter =25, N z =16, Λ=2, 1 =0.2, ε 1 =0, α=0.1, ω c =1, s=1, T=3*10-8 α=0.1 α=0.3 α=0.5 α=0.7 α=1.0 α=1.1 α=1.2 α=1.3 α=1.4 10 3 10 4 10 5 10 6 10 7 10 8 10 9-0.5 10-1 10 0 10 1 10 2 10 3 10 4 10 5 t*ω c S z 0.4 0.2 0-0.2 J(ω) = 2παωc 1 s ω s Ohmic Regime: s = 1 QPT at α c ( ) Toulouse point α = 1/2 oszillatory α < 1/2 overdamped α c > α > 1/2 localize: α > α c Concepts in Electron Correlation, Hvar, 30/9/2005 p.11/18

Charge Fluctuation in a Small Quantum Dot H>0 H=0 µ H = kσ ǫ kσ c kσ c kσ + σ [E d σh]d σd σ + Un d n d time Ε d + kσ ) V (c kσ d σ + d σc kσ impurity levels change of E d : change dynamics change of mag. field H: spin dynamics change of V : route to new equilibrium Concepts in Electron Correlation, Hvar, 30/9/2005 p.12/18

Charge Fluctuation in a Small Quantum Dot H>0 H=0 µ Ε d n d 1 0.8 0.6 (a) Γ 0 = Γ 1 =2 =4 =6 =8 =10 =12 =18 time impurity levels n d 1 0.8 0.6 (b) Γ 0 = 0 0.01 0.1 1 10 100 t*γ 1 Charge relaxation time scale : t ch = 1/Γ 1 Concepts in Electron Correlation, Hvar, 30/9/2005 p.12/18

Spin Fluctuation in a Small Quantum Dot H>0 H=0 µ s z 0.2 0.1 =2 =4 =6 =8 =10 =12 =18 (c) Γ 0 = Γ 1 Ε d 0 time 0.2 impurity levels s z 0.1 (d) Γ 0 = 0 0 10-2 10-1 10 0 10 1 10 2 10 3 t*γ 1 Concepts in Electron Correlation, Hvar, 30/9/2005 p.13/18

Spin Fluctuation in a Small Quantum Dot H>0 H=0 µ Ε d s z 0.2 0.1 0 (a) Γ 0 = Γ 1 =2 =4 =6 =8 =10 =12 =18 time 0.2 impurity levels s z 0.1 (b) Γ 0 = 0 0 10-4 10-3 10-2 10-1 10 0 10 1 10 2 t/t K Spin relaxation time scale : t sp 1/T K Concepts in Electron Correlation, Hvar, 30/9/2005 p.13/18

T SIAM Time-Evolution start: high temperature temperature T temperature T Free Impurity V 0 = 0 Kondo Regime Mixed Valence V 0 0 no universality time t time t time evolution depends on boundary conditions Concepts in Electron Correlation, Hvar, 30/9/2005 p.14/18

Kondo Model H = H cb + H z 2 σ z + H x σ x + JS 2 loc s cb Spin Precession J=0.2 Spin Precession: H x = 0.1 H z 0.4 0.5 0.4 0.2 Sz 0.3 0.2 <S xyz > 0 S x 0.1 0 0.5 S y 0.5-0.2 S z Fit: -0.5*cos(H z *t)*e -0.015*t 0 0 Sy 0.5 0.5 Sx -0.4 0.1 1 10 100 1000 t*d Fri Jun 10 15:03:45 2005 external magnetic field: x z-axis Concepts in Electron Correlation, Hvar, 30/9/2005 p.15/18

TD-NRG algorithm: Outlook Summary and Outlook complete basis set needed for the time evolution dissipation and decoherence due to the bath Spin-Boson Model benchmark: decoherence and non-ohmic baths oscillatory vs overdamped regime SIAM: two relaxation time scale for spin and charge dynamics Kondo Model: spin relaxation and spin precession Bosonic QI models: charge transfer in bio-molecules, photosynthesis description of steady state currents Concepts in Electron Correlation, Hvar, 30/9/2005 p.16/18

Benchmark: Resonant Level Model t*γ 0 2 4 6 8 10 1 n d 0.8 0.6 0.4 0.8 (a) E d 1 /Γ = -1 E d 1 /Γ = -2 n d (t=0) E d 1 /Γ = -3 0 30 60 N - m 0.6 0.5 0.4 n d 0.6 (b) T/Γ = 0.1 T/Γ = 0.5 T/Γ = 1 T/Γ = 5 0.4 0 2 4 6 8 10 t*t Concepts in Electron Correlation, Hvar, 30/9/2005 p.17/18

Anisotropic Kondo Model H = H cb + H z 2 + kk J perp 2 σ z + H x σ x + 2 kk αβ ( c k c k S imp + c k c k S+ imp J z 2 c kα c k β σ zs z imp ) Concepts in Electron Correlation, Hvar, 30/9/2005 p.18/18

Anisotropic Kondo Model spin relaxation: J 0 = 0, J 1 S z S z 0.5 0.48 0.46 0.44 J z =-0.1 J =0.15 (analytic) J =0.15(ana) O(t 2 ) = 0.15D = const 0 1 2 3 4 5 6 7 8 9 10 0,5 0,4 0,3 0,2 0,1 0 (a) (b) J z =0.15 J z =0.1 J z =0.05 J z =0.0 10 0 10 2 10 4 10 6 10 8 10 10 t*d two regimes: short time scale analytical result: G(x) = S z S z (0) (2ρJ 1 )2 [G(2Dt) 2G(Dt)] X l=1 ( 1) l+1 (2l)!2l(2l 1) x2l external magnetic field: z-axis Concepts in Electron Correlation, Hvar, 30/9/2005 p.18/18

Anisotropic Kondo Model spin relaxation: J 0 = 0, J 1 S z 0,5 0,4 0,3 0,2 0,1 0 = 0.15D = const 10-4 10-2 10 0 t*t K J z =0.15 J z =0.1 J z =0.05 J z =0.0 J z =-0.1 two regimes: short time scale analytical result: S z S z (0) (2ρJ 1 )2 [G(2Dt) 2G(Dt)] G(x) = X l=1 ( 1) l+1 (2l)!2l(2l 1) x2l long time: t long 1/T K Concepts in Electron Correlation, Hvar, 30/9/2005 p.18/18

Anisotropic Kondo Model ferromagnetic regime, spin relaxation: H z = 0.01 0 t*d 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 S z /S z (0) 1 0.8 0.6 (a) 0.4 S z /S z (0) 1 0.8 0.6 (b) J=-0.1, T=0.13 J=-0.1, T=0.018 J=-0.1, T=0.0023 J=-0.1, T=4.0*10-5 J=-0.2, T=0.13 J=-0.2, T=0.018 J=-0.2, T=0.0023 J=-0.2, T=4.0*10-5 0.4 10-3 10-2 10-1 10 0 10 1 t*t*j(t) external magnetic field: z-axis Concepts in Electron Correlation, Hvar, 30/9/2005 p.18/18