The Australian Journal of Mathematical Analysis and Applications

Similar documents
NORM ESTIMATES FOR BESSEL-RIESZ OPERATORS ON GENERALIZED MORREY SPACES

Fractional integral operators on generalized Morrey spaces of non-homogeneous type 1. I. Sihwaningrum and H. Gunawan

DENSITY OF THE SET OF ALL INFINITELY DIFFERENTIABLE FUNCTIONS WITH COMPACT SUPPORT IN WEIGHTED SOBOLEV SPACES

Inclusion Properties of Orlicz and Weak Orlicz Spaces

ON WEIGHTED ESTIMATES FOR STEIN S MAXIMAL FUNCTION. Hendra Gunawan

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2

446 EIICHI NAKAI where The f p;f = 8 >< sup sup f(r) f(r) L ;f (R )= jb(a; r)j jf(x)j p dx! =p ; 0 <p<; ess sup jf(x)j; p = : x2 ( f0g; if 0<r< f(r) =

A NOTE ON SOME OPERATORS ACTING ON CENTRAL MORREY SPACES. Martha Guzmán-Partida. 1. Introduction

INVERSE THEOREMS OF APPROXIMATION THEORY IN L p,α (R + )

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

LANZHE LIU. Changsha University of Science and Technology Changsha , China

Oscillation and Property B for Third Order Difference Equations with Advanced Arguments

ON MULTILINEAR FRACTIONAL INTEGRALS. Loukas Grafakos Yale University

A WEAK-(p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR ON MORREY SPACES OVER METRIC MEASURE SPACES

The Poisson Summation Formula and an Application to Number Theory Jason Payne Math 248- Introduction Harmonic Analysis, February 18, 2010

Math 113 Exam 3 Practice

1 The Haar functions and the Brownian motion

Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey spaces

A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

ON SINGULAR INTEGRAL OPERATORS

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

MAT1026 Calculus II Basic Convergence Tests for Series

On Summability Factors for N, p n k

Sh. Al-sharif - R. Khalil

Some remarks on the paper Some elementary inequalities of G. Bennett

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

On the Weak Localization Principle of the Eigenfunction Expansions of the Laplace-Beltrami Operator by Riesz Method ABSTRACT 1.

Harmonic Number Identities Via Euler s Transform

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Math 113, Calculus II Winter 2007 Final Exam Solutions

Solutions to Tutorial 5 (Week 6)

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

DANIELL AND RIEMANN INTEGRABILITY

REGRESSION WITH QUADRATIC LOSS

Math Solutions to homework 6

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

GENERALIZED STUMMEL CLASS AND MORREY SPACES. Hendra Gunawan, Eiichi Nakai, Yoshihiro Sawano, and Hitoshi Tanaka

Dominant of Functions Satisfying a Differential Subordination and Applications

INEQUALITIES BJORN POONEN

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

y X F n (y), To see this, let y Y and apply property (ii) to find a sequence {y n } X such that y n y and lim sup F n (y n ) F (y).

SPECTRAL PROPERTIES OF THE OPERATOR OF RIESZ POTENTIAL TYPE

The Australian Journal of Mathematical Analysis and Applications

Council for Innovative Research

A Proof of Birkhoff s Ergodic Theorem

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems

CARLEMAN INTEGRAL OPERATORS AS MULTIPLICATION OPERATORS AND PERTURBATION THEORY

INFINITE SEQUENCES AND SERIES

Chapter 7 Isoperimetric problem

The Bilateral Laplace Transform of the Positive Even Functions and a Proof of Riemann Hypothesis

Sequences and Limits

Rational Bounds for the Logarithm Function with Applications

Local and global estimates for solutions of systems involving the p-laplacian in unbounded domains

Sequences and Series of Functions

6. Uniform distribution mod 1

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

Lecture 3: Convergence of Fourier Series

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

COMMON FIXED POINT THEOREMS VIA w-distance

Weighted sharp maximal function inequalities and boundedness of multilinear singular integral operator with variable Calderón-Zygmund kernel

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

The Arakawa-Kaneko Zeta Function

SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Measure and Measurable Functions

The log-behavior of n p(n) and n p(n)/n

Math 113 Exam 4 Practice

ON MEAN ERGODIC CONVERGENCE IN THE CALKIN ALGEBRAS

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

Chapter 6 Infinite Series

MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY

An elementary proof that almost all real numbers are normal

2 Banach spaces and Hilbert spaces

Asymptotic distribution of products of sums of independent random variables

Solutions to home assignments (sketches)

1+x 1 + α+x. x = 2(α x2 ) 1+x

SPECTRUM OF THE DIRECT SUM OF OPERATORS

Math 104: Homework 2 solutions

Characterizations Of (p, α)-convex Sequences

Optimally Sparse SVMs

1. Introduction. g(x) = a 2 + a k cos kx (1.1) g(x) = lim. S n (x).

ON SOME INEQUALITIES IN NORMED LINEAR SPACES

Regression with quadratic loss

Concavity Solutions of Second-Order Differential Equations

5.1 Review of Singular Value Decomposition (SVD)

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo

Stochastic Matrices in a Finite Field

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

On the convergence rates of Gladyshev s Hurst index estimator

ON WELLPOSEDNESS QUADRATIC FUNCTION MINIMIZATION PROBLEM ON INTERSECTION OF TWO ELLIPSOIDS * M. JA]IMOVI], I. KRNI] 1.

Math 113 Exam 3 Practice

lim za n n = z lim a n n.

b i u x i U a i j u x i u x j

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

Transcription:

The Australia Joural of Mathematical Aalysis ad Applicatios Volume 13, Issue 1, Article 9, pp 1-10, 2016 THE BOUNDEDNESS OF BESSEL-RIESZ OPERATORS ON GENERALIZED MORREY SPACES MOCHAMMAD IDRIS, HENDRA GUNAWAN AND ERIDANI Received 23 May, 2016; accepted 22 Jue, 2016; published 4 July 2016, 2016 DEPARTMENT OF MATHEMATICS, BANDUNG INSTITUTE OF TECHNOLOGY, BANDUNG 40132, INDONESIA mochidris@studetsitbacid DEPARTMENT OF MATHEMATICS, BANDUNG INSTITUTE OF TECHNOLOGY, BANDUNG 40132, INDONESIA hguawa@mathitbacid URL: http://persoalfmipaitbacid/hguawa/ DEPARTMENT OF MATHEMATICS, AIRLANGGA UNIVERSITY, SURABAYA 60115, INDONESIA eridaidiadewi@gmailcom ABSTRACT I this paper, we prove the boudedess of Bessel-Riesz operators o geeralized Morrey spaces The proof uses the usual dyadic decompositio, a Hedberg-type iequality for the operators, ad the boudedess of Hardy-Littlewood maximal operator Our results reveal that the orm of the operators is domiated by the orm of the kerels Key words ad phrases: Bessel-Riesz operators, Hardy-Littlewood maximal operator, geeralized Morrey spaces, Boudedess, Kerels 2000 Mathematics Subject Classificatio Primary 42B20; Secodary 26A33, 42B25, 26D10, 47G10 ISSN electroic): 1449-5910 c 2016 Austral Iteret Publishig All rights reserved The first ad secod authors are supported by ITB Research & Iovatio Program 2015

2 MOCHAMMAD IDRIS, HENDRA GUNAWAN AND ERIDANI 1 INTRODUCTION We begi with the defiitio of Bessel-Riesz operators For γ 0 ad 0 < α <, we defie I α,γ f x) := K α,γ x y) f y) dy, R for every f L p loc R ), p 1, where K α,,γ x) := x α 1+ x ) γ Here, I α,γ is called Bessel-Riesz operator ad K α,γ is called Bessel-Riesz kerel The ame of the kerel resembles the product of Bessel kerel ad Riesz kerel [13] While the Riesz kerel captures the local behaviour, the Bessel kerel take cares the global behaviour of the fuctio The Bessel-Riesz kerel is used i studyig the behaviour of the solutio of a Schrödiger type equatio [8] For γ = 0, we have I α,0 = I α, kow as fractioal itegral operators or Riesz potetials[12] Aroud 1930, Hardy ad Littlewood [5, 6] ad Sobolev [11] have proved the boudedess of I α o Lebesgue spaces via the iequality I α f L q C f L p, for every f L p R ), where 1 < p <, ad 1 = 1 α Here C deotes a costat which α q p may deped o α, p, q, ad, but ot o f For 1 p q, the classical) Morrey space L p,q R ) is defied by L p,q R ) := {f L p loc R ) : f L p,q < }, ) 1/p where f L p,q := sup r 1/q 1/p) r>0,a R fx) p dx For these spaces, we have a iclusio property which is preseted by the followig theorem Theorem 11 For 1 p q, we have L q R ) = L q,q R ) L p,q R ) L 1,q R ) O Morrey spaces, Spae [10] has show that I α is bouded form L p 1,q 1 R ) to L p 2,q 2 R ) for 1 < p 1 < q 1 <, 1 α p 2 = 1 p 1 α, ad 1 q 2 = 1 q 1 α Furthermore, Adams [1] ad Chiareza ad Frasca [2] reproved it ad obtaied a stroger result which is preseted below Theorem 12 [Adams, Chiareza-Frasca] If 0 < α <, the we have I α f L p 2,q 2 C f L p 1,q 1, for every f L p 1,q 1 R ) where 1 < p 1 < q 1 <, 1 α p 2 = 1 p 1 1 αq 1 ), ad 1 q 2 = 1 q 1 α For φ : R + R + ad 1 p <, we defie the geeralized Morrey space where f L p,φ := sup r>0,a R 1 φr) L p,φ R ) := {f L p loc R ) : f L p,φ < }, 1 1/p dx) r fx) p Here we assume that φ is almost decreasig ad t /p φt) is almost decreasig, so that φ satisfies the doublig coditio, that is, there exists a costat C such that 1 φr) C wheever 1 r 2 C φv) 2 v I 1994, Nakai [9] obtaied the boudedess of I α from L p1,φ R ) to L p2,ψ R ) where 1 < p 1 <, 1 α p 2 = 1 p 1 α ad v α 1 φv)dv Cr α φr) Cψr) for every r > 0 Nakai s r result may be viewed as a extesio of Spae s Later o, i 2009, Guawa ad Eridai [3] exteded Adams-Chiareza-Frasca s result Theorem 13 [Guawa-Eridai] If φv) dv Cφ r), ad φr) r v Crβ for every r > 0, β < α, 1 < p 1 <, 0 < α <, the we have α p 1 I α f L p 2,ψ C f L p 1,φ for every f L p 1,φ R ) where p 2 = βp 1 α+β ad ψr) = φr)p 1/p 2, r > 0, Vol 13, No 1, Art 9, pp 1-10, 2016

THE BOUNDEDNESS OF BESSEL-RIESZ OPERATORS ON MORREY SPACES 3 The proof of the boudedess of I α o Lebesgue spaces, Morrey spaces, or geeralized Morrey spaces, usually ivolves Hardy-Littlewood maximal operator, which is defied by 1 Mf x) := sup f y) dy, B x B for every f L p loc R ) where B deotes the Lebesgue measure of the ball B = Ba, r) cetered at a R with radius r > 0) It is well kow that the operator M is bouded o L p R ) for 1 < p [12, 13] ad also o Morrey spaces L p,q for 1 < p q [2] Next, we kow that I α,γ is guarateed to be bouded o geeralized Morrey spaces because K α,γ x) K α x) for every x R The boudedess of I α,γ o Lebesgue spaces ca also be proved by usig Youg s iequality, as show i [7] Theorem 14 [7] For γ > 0 ad 0 < α <, we have K α,γ L t R ) wheever Accordigly, we have α I α,γ f L q K α,γ L t f L p B < t < +γ α for every f L p R ) where 1 p < t, < t < +γ α, 1 + 1 = 1 + 1 α q p t Usig the boudedess of Hardy-Littlewood maximal operator, we also kow that I α,γ is bouded o Morrey spaces Theorem 15 [7] For γ > 0 ad 0 < α <, we have I α,γ f L p 2,q 2 C K α,γ L t f L p 1,q 1 for every f L p 1,q 1 R ) where 1 < p 1 < q 1 < t, 1 q 2 + 1 = 1 q 1 + 1 t < t < +γ α, 1 α p 2 + 1 = 1 p 1 + 1, ad t I 1999, Kurata et al [8] proved the boudedess of W I α,γ o geeralized Morrey spaces where W is a multiplicatio operator A similar result to Kurata s ca be foud i [3] I the ext sectio, we shall reprove the boudedess of I α,γ o geeralized Morrey spaces usig a Hedberg-type iequality ad the boudedess of Hardy-Littlewood maximal operator o these spaces Theorem 16 Nakai) For 1 < p, we have for every f L p,φ R ) Mf L p,φ C f L p,φ, Our results show that the orm of Bessel-Riesz operators is domiated by the orm of their kerels o geeralized) Morrey spaces 2 MAIN RESULTS For γ > 0 ad 0 < α <, oe may observe that the kerel K α,γ belogs to Lebesgue spaces L t R ) wheever < t <, where +γ α α k Z 2 k R) α )t+ 1 + 2 k R) γt K α,γ t L t see [7]) With this i mid, we obtai the boudedess of I α,γ o geeralized Morrey spaces as i the followig theorem, Vol 13, No 1, Art 9, pp 1-10, 2016

4 MOCHAMMAD IDRIS, HENDRA GUNAWAN AND ERIDANI Theorem 21 Let γ > 0 ad 0 < α < If φr) Cr β for every r > 0, αt p 1 1 < p 1 < t, ad < t <, the we have +γ α α I α,γ f L p 2,ψ C K α,γ L t f L p 1,φ, for every f L p 1,φ R ) where p 2 = βp 1 α+β, ad ψr) = φr)p 1/p 2 Proof Let γ > 0 ad 0 < α < Suppose that φr) Cr β for every r > 0, αt p 1 1 < p 1 < t, < t < Take f +γ α α Lp 1,φ R ) ad write I α,γ f x) := I 1 x) + I 2 x), x y α fy) 1+ x y ) γ dy ad I 2 x) := x y R for every x R where I 1 x) := x y <R R > 0 Usig dyadic decompositio, we have the followig estimate for I 1 : x y α f y) I 1 x) 1 + x y ) γ dy C 1 C 2 Mf x) 2 k R ) α 1 + 2 k R) γ 2 k R ) α +/t 2 k R ) /t 1 + 2 k R) γ We the use Hölder s iequality to get 1 2 k R ) ) α )t+ 1/t I 1 x) C 2 Mf x) 1 + 2 k R) γt Because we have 1 f y) dy 2 k R ) ) 1/t 2 k R ) ) α )t+ 1/t 2 k R ) ) α )t+ 1/t 1 + 2 k R) γt 1 + 2 k R) γt K α,γ Lt, k Z we obtai I 1 x) C 3 K α,γ L t Mf x) R /t To estimate I 2, we use Hölder s iequality agai: 2 k R ) α I 2 x) C 4 1 + 2 k R) γ It follows that C 4 2 k R ) α 1 + 2 k R) γ 2 k R ) /p 1 I 2 x) C 5 f L p 1,φ C 6 f L p 1,φ f y) dy 2 k R ) α +/t 1 + 2 k R) γ φ 2 k R ) 2 k R ) /t 2 k R ) α +/t 2 1 + 2 k R) γ k R ) β+/t f y) p 1 dy) 1/p1 β < α, β < α, x y α fy) 1+ x y ) γ dy,, Vol 13, No 1, Art 9, pp 1-10, 2016

THE BOUNDEDNESS OF BESSEL-RIESZ OPERATORS ON MORREY SPACES 5 Aother use of Hölder s iequality gives 2 k R ) ) α )t+ 1/t I 2 x) C 6 f L p 1,φ 2 k 1 + 2 k R) γt R ) βt + Because βt + < 0 ad 2 k R) α )t+ K 1+2 k R) γt α,γ t L, we obtai t Summig the two estimates, we obtai I 2 x) C 7 K α,γ L t f L p 1,φ R β R /t I α,γ fx) C 8 K α,γ L t ) Mfx)R /t + f L p 1,φR /t +β, ) 1/t for every x R Now, for each x R, choose R > 0 such that R β = Mfx) Hece we get f L p 1,φ a Hedberg-type iequality for I α,γ f, amely I α,γ fx) C 9 K α,γ L t f α/β L p 1,φ Mfx) 1+α/β Now put p 2 := βp 1 For arbitrary a α+β R ad r > 0, we have ) 1/p2 I α,γ fx) p 2 dx C 9 K α,γ Lt f 1 p 1/p 2 L p 1,φ Mfx) p 1 dx) 1/p2 We divide both sides by φr) p 1/p 2 r /p 2 to get I α,γfx) p 2 dx) 1/p2 Mfx) p 1 dx) 1/p2 ) ψr)r /p 2 C 9 K α,γ L t f 1 p 1/p 2 L p 1,φ φr) p 1/p 2r /p 2, where ψr) := φr) p 1/p 2 Takig the supremum over a R ad r > 0, we obtai I α,γ f L p 2,ψ C 10 K α,γ L t f 1 p 1/p 2 L p 1,φ Mf p 1/p 2 L p 1,φ By the boudedess of the maximal operator o geeralized Morrey spaces Nakai s Theorem), the desired result follows: I α,γ f L p 2,ψ C K α,γ L t f L p 1,φ We ote that from the iclusio property of Morrey spaces, we have K α,γ L s,t K α,γ L t,t = K α,γ L t wheever 1 s t, < t < Now we wish to obtai a more geeral result for the +γ α α boudedess of I α,γ by usig the fact that the kerel K α,γ belogs to Morrey spaces Theorem 22 Let γ > 0 ad 0 < α < If φr) Cr β for every r > 0, αt p 1 1 < p 1 < t, < t <, the we have +γ α α β < α, I α,γ f L p 2,ψ C K α,γ L s,t f L p 1,φ, for every f L p 1,φ R ) where 1 s t, p 2 = βp 1 α+β, ad ψ v) = φ v)p 1/p 2, Vol 13, No 1, Art 9, pp 1-10, 2016

6 MOCHAMMAD IDRIS, HENDRA GUNAWAN AND ERIDANI Proof Let γ > 0 ad 0 < α < Suppose that φr) Cr β for every r > 0, αt p 1 β < α, 1 < p 1 < t, < t < As i the proof of Theorem 21, we have I +γ α α α,γfx) := I 1 x) + I 2 x) for every x R Now, we estimate I 1 usig dyadic decompositio as follow: I 1 x) C 1 = C 2 Mf x) 2 k R ) α 1 + 2 k R) γ x y α f y) 1 + x y ) γ dy 2 k R ) α +/s 2 k R ) /s 1 + 2 k R) γ, where 1 s t By Hölder s iequality, 1 2 k R ) ) α )s+ 1/s I 1 x) C 2 Mf x) 1 + 2 k R) γs f y) dy 2 k R ) ) 1/s We also have 1 2 k R) α )s+ 1+2 k R) γs 0< x <R Ks α,γ x) dx, so that ) 1 I 1 x) C 3 Mf x) Kα,γ s s x) dx R /s C 3 K α,γ L s,t Mf x) R /t 0< x <R Next, we estimate I 2 by usig Hölder s iequality As i the proof of Theorem 21, we obtai 2 k R ) α I 2 x) C 4 2 1 + 2 k R) γ k R ) 1/p1 /p 1 f y) p 1 dy) It thus follows that I 2 x) C 5 f L p 1,φ C 6 f L p 1,φ 2 k R ) ) 1/s α φ2 k R) 2 kr x y <2 k+1r dy 1 + 2 k R) γ 2 k R) /s φ2 k R) 2 k R ) /t 2kR x y <2 k+1r Ks α,γx y)dy 2 k R) /s /t Because φr) Cr β ad R Ks α,γ x y)dy)1/s we get From the two estimates, we obtai ) 1/s 2 k R) /s /t K α,γ L s,t for every k = 0, 1, 2,, I 2 x) C 7 K α,γ L s,t f L p 1,φ I α,γ fx) C 9 K α,γ L s,t 2 k R ) β+/t C 8 K α,γ L s,t f L p 1,φ R β R /t ) Mfx)R /t + f L p 1,φR /t +β, for every x R Now, for each x R, choose R > 0 such that R β = Mfx) Hece we get f L p 1,φ I α,γ f x) C 9 K α,γ L s,t f α/β L p 1,φ Mf x) 1+α/β, Vol 13, No 1, Art 9, pp 1-10, 2016

THE BOUNDEDNESS OF BESSEL-RIESZ OPERATORS ON MORREY SPACES 7 Put p 2 := βp 1 For arbitrary a α+β R ad r > 0, we have ) 1/p2 I α,γ f x) p 2 dx C 9 K α,γ f 1 p 1/p 2 Ls,t L p 1,φ Mf x) p 1 dx) 1/p2 Divide both sides by φ r) p 1/p 2 r /p 2 ad take the supremum over a R ad r > 0 to get I α,γ f L p 2,ψ C 10 K α,γ L s,t f 1 p 1/p 2 L p 1,φ Mf p 1/p 2 L p 1,φ, where ψr) := φr) p 1/p 2 With the boudedess of the maximal operator o geeralized Morrey spaces Nakai s Theorem), we obtai as desired I α,γ f L p 2,ψ C p1,φ K α,γ L s,t f L p 1,φ, Note that by Theorem 22 ad the iclusio of Morrey spaces, we recover Theorem 21: I α,γ f L p 2,ψ C K α,γ L s,t f L p 1,φ C K α,γ L t f L p 1,φ We still wish to obtai a better estimate The followig lemma presets that the Bessel-Riesz kerels belog to geeralized Morrey space L s,σ R ) for some s 1 ad a suitable fuctio σ Lemma 23 Suppose that γ > 0 ad 0 < α < If σ : R + R + satisfies r α )s+ 1 dr Cσ s R)R 0<r R for every R > 0, the K α,γ L s,σ R ) Proof Suppose that the hypothesis holds It is sufficiet to evaluate the itegral aroud 0 We observe that Kα,γx)dx s x α )s = dx C r α )s+ 1 dr Cσ s R)R x R x R 1 + x ) γs 0<r R We divide both sides of the iequality by σ s R)R ad take s th -root to obtai ) 1/s x R Ks α,γx)dx C 1/s σr)r /s Now, takig the supremum over R > 0, we have Hece K α,γ L s,σ R ) sup R>0 x R Ks α,γx)dx ) 1/s σr)r /s < By the hypothesis of Lemma 23 we also obtai R 2 k R< x 2 k+1 R Ks ρ,γ x)dx)1/s σ2 k R)2 k R) /s K α,γ L s,σ for every iteger k ad R > 0 Moreover, P k= 1 Ks α,γ2 k R)2 k R) ) 1/s σr)r) /s K α,γ L s,σ holds for every R > 0 Oe may observe that 1 s l R 1 l σr 1 ) for every R 1 > 1 For σr) = R /t, this iequality reduces to 1 s t We shall ow use the lemma to prove the followig theorem, Vol 13, No 1, Art 9, pp 1-10, 2016

8 MOCHAMMAD IDRIS, HENDRA GUNAWAN AND ERIDANI Theorem 24 Suppose that σ : R + R + satisfies the doublig coditio ad σr) Cr α for every r > 0, so that K α,γ L s,σ R ) for 1 s <, where 0 < α < ad γ > 0 If α φr) Cr β for every r > 0, where p 1 < β < α, the we have I α,γ f L p 2,ψ C p1,φ K α,γ L s,σ f L p 1,φ for every f L p 1,φ R ), where 1 < p 1 < α, p 2 = βp 1 β+ α ad ψr) = φr)p 1/p 2 Proof Let γ > 0 ad 0 < α < Suppose that σ : R + R + satisfies the doublig coditio ad σr) Cr α for every r > 0, such that K α,γ L s,σ R ) for 1 s < Suppose also α that φr) Cr β for every r > 0, where p 1 < β < α, 1 < p 1 < As i the proof of α Theorem 21, we write I α,γ f x) := I 1 x) + I 2 x) for every x R As usual, we estimate I 1 by usig dyadic decompositio: x y α f y) I 1 x) 1 + x y ) γ dy C 1 = C 2 Mf x) 2 k R ) α 1 + 2 k R) γ 2 k R ) α +/s 2 k R ) /s 1 + 2 k R) γ By usig Hölder iequality, we obtai 1 2 k R ) ) α )s+ 1/s I 1 x) C 2 Mf x) 1 + 2 k R) γs But 1 2 k R) α )s+ 1+2 k R) γs 0< x <R Ks α,γ x) dx, ad so we get I 1 x) C 2 Mf x) Next, we estimate I 2 as follows: 2 k R ) α I 2 x) C 4 1 + 2 k R) γ C 4 C 5 f L p 1,φ C 6 f L p 1,φ 0< x <R C 2 K α,γ L s,σ Mf x) σ R) R C 3 K α,γ L s,σ Mf x) R α 2 k R ) α 1 + 2 k R) γ 2 k R ) /p 1 f y) dy 2 k R ) ) 1 Kα,γ s s x) dx R /s f y) dy ) 1/s ) 1/p1 f y) p 1 dy 2 k R ) α φ 2 k R ) 2 k R ) ) 1/s 2 kr x y <2 k+1r dy 1 + 2 k R) γ 2 k R ) α+β 2 k R) /s 2kR x y <2 k+1r Ks α,γ x y) dy σ 2 k R) 2 k R) /s ) 1/s, Vol 13, No 1, Art 9, pp 1-10, 2016

THE BOUNDEDNESS OF BESSEL-RIESZ OPERATORS ON MORREY SPACES 9 Because R Ks α,γx y)dy σ2 k R)2 k R) K α,γ s Ls,σ for every k = 0, 1, 2,, we obtai I 2 x) C 6 K α,γ L s,σ f L p 1,φ 2 k R ) α+β C 7 K α,γ L s,σ f L p 1,φ R α+β It follows from the above estimates for I 1 ad I 2 that I α,γ f x) C 8 K α,γ L s,σ Mf x) R α + f L p1,φ R α+β) for every x R Now, for each x R, choose R > 0 such that R β = Mfx) f L p 1,φ, whece I α,γ f x) C 9 K α,γ L s,σ f α )/β L p 1,φ Mf x) 1+ α)/β Put p 2 := βp 1 For arbitrary a β+ α R ad r > 0, we have ) 1/p2 I α,γ f x) p 2 dx C 9 K α,γ f 1 p 1/p 2 Ls,σ L p 1,φ Divide the both sides by φ r) p 1/p 2 r /p 2 to get ) 1/p2 ) Mf x) p 1 dx I α,γfx) p 2 dx) 1/p2 I α,γfx) p 2 dx) 1/p2 ψ r) r /p 2 = φr) p 1/p 2r /p 2 Mfx) p 1 dx) 1/p2 ) C 9 K α,γ L s,σ f 1 p 1/p 2 L p 1,φ φr) p 1/p 2r /p 2, where ψr) := φr) p 1/p 2 Fially, take the supremum over a R ad r > 0 to obtai I α,γ f L p 2,ψ C 10 K α,γ L s,σ f 1 p 1/p 2 Mf p 1/p 2 L p 1,φ L p 1,φ Because the maximal operator is bouded o geeralized Morrey spaces Nakai s Theorem), we coclude that I α,γ f L p 2,ψ C p1,φ K α,γ L s,σ f L p 1,φ 3 CONCLUDING REMARKS The results preseted i this paper, amely Theorems 21, 22, ad 24, exted the results o the boudedess of Bessel-Riesz operators o Morrey spaces [7] Similar to Guawa-Eridai s result for I α, Theorems 21, 22, ad 24 esures that I α,γ : L p1,φ R ) L p 2,φ p 1 /p 2 R ) Notice that if we have σ : R + R + such that for t every R > 0, the Theorem 24 gives a better estimate tha Theorem 22 Now, if we defie σr) := 1 + R 1) /t R /t for some t 1 > t, the K α,γ L s,σ < K α,γ L s,t By Theorem 22 ad the iclusio property of Morrey spaces, we obtai, +γ α I α,γ f L p 2,ψ C K α,γ L s,σ f L p 1,φ < C K α,γ L s,t f L p 1,φ C K α,γ L t f L p 1,φ ), the α R /t < σr) holds for We ca therefore say that Theorem 24 gives the best estimate amog the three Furthermore, we have also show that, i each theorem, the orm of Bessel-Riesz operators o geeralized Morrey spaces is domiated by that of Bessel-Riesz kerels, Vol 13, No 1, Art 9, pp 1-10, 2016

10 MOCHAMMAD IDRIS, HENDRA GUNAWAN AND ERIDANI REFERENCES [1] DR ADAMS, A ote o Riesz potetials, Duke Math J, 42, 1975), pp 765-778 [2] F CHIARENZA ad M FRASCA, Morrey spaces ad Hardy-Littlewood maximal fuctio, Red Mat, 7, 1987), pp 273-279 [3] H GUNAWAN ad ERIDANI, Fractioal itegrals ad geeralized Olse iequalities, Kyugpook Math J, 1, 2009) 49 [4] L GRAFAKOS, Classical Fourier Aalysis, Graduate Texts i Matemathics, Vol 249, Spriger, New York, 2008 [5] GH HARDY ad JE LITTLEWOOD, Some properties of fractioal itegrals I, Math Zeit, 27, 1927), pp 565-606 [6] GH HARDY ad JE LITTLEWOOD, Some properties of fractioal itegrals II, Math Zeit, 34, 1932), pp 403-439 [7] M IDRIS, H GUNAWAN, J LINDIARNI, ad ERIDANI, The boudedess of Bessel-Riesz operators o Morrey spaces, submitted to the Proceedigs of ISCPMS 2015 [8] K KURATA, S NISHIGAKI ad S SUGANO, Boudedess of itegral operator o geeralized Morrey spaces ad its aplicatio to Schrödiger operator, Proc Amer Math Soc, 128, 1999), pp 587-602 [9] E NAKAI, Hardy-Littlewood maximal operator, sigular itegral operator ad Riesz potetials o geeralized Morrey spaces, Math Nachr, 166, 1994), pp 95-103 [10] J PEETRE, O the theory of L p,λ spaces, J Fuct Aal, 4, 1969), pp 71-87 [11] SL SOBOLEV, O a theorem i fuctioal aalysis Russia), Math Sob, 46, 1938), pp 471-497 [Eglish traslatio i Amer Math Soc Trasl ser 2, 34, 1963), pp 39-68] [12] EM STEIN, Sigular Itegral ad Differetiability Properties of Fuctios, Priceto Uiversity Press, Priceto, New Jersey, 1970 [13] EM STEIN, Harmoic Aalysis: Real Variable Methods, Orthogoality, ad Oscillatory Itegrals, Priceto Uiversity Press, Priceto, New Jersey, 1993, Vol 13, No 1, Art 9, pp 1-10, 2016