Line Integrals. Partitioning the Curve. Estimating the Mass

Similar documents
We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Section 17.2 Line Integrals

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Line Integrals. Chapter Definition

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Math Advanced Calculus II

10 Vector Integral Calculus

Integrals along Curves.

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

APPLICATIONS OF THE DEFINITE INTEGRAL

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

We divide the interval [a, b] into subintervals of equal length x = b a n

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

The Regulated and Riemann Integrals

The Wave Equation I. MA 436 Kurt Bryan

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

1 Line Integrals in Plane.

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals

Math 8 Winter 2015 Applications of Integration

Review of Calculus, cont d

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definite integral. Mathematics FRDIS MENDELU

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Math 231E, Lecture 33. Parametric Calculus

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Integration Techniques

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

Chapter 0. What is the Lebesgue integral about?

The Fundamental Theorem of Calculus

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

p(t) dt + i 1 re it ireit dt =

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

38 Riemann sums and existence of the definite integral.

Summary: Method of Separation of Variables

Note 16. Stokes theorem Differential Geometry, 2005

Week 10: Riemann integral and its properties

Notes on length and conformal metrics

ODE: Existence and Uniqueness of a Solution

Lecture 3: Curves in Calculus. Table of contents

Complex variables lecture 5: Complex integration

Chapter 6 Notes, Larson/Hostetler 3e

INTRODUCTION TO INTEGRATION

Week 10: Line Integrals

1 The fundamental theorems of calculus.

Section 6: Area, Volume, and Average Value

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Sections 5.2: The Definite Integral

Main topics for the First Midterm

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Math 32B Discussion Session Session 7 Notes August 28, 2018

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

Stuff You Need to Know From Calculus

Section 14.3 Arc Length and Curvature

Math 554 Integration

1 The Riemann Integral

Contents. 4.1 Line Integrals. Calculus III (part 4): Vector Calculus (by Evan Dummit, 2018, v. 3.00) 4 Vector Calculus

Riemann Integrals and the Fundamental Theorem of Calculus

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

Review of basic calculus

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

Review of Riemann Integral

l 2 p2 n 4n 2, the total surface area of the

Riemann is the Mann! (But Lebesgue may besgue to differ.)

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx

Math 1B, lecture 4: Error bounds for numerical methods

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

4. Calculus of Variations

The Riemann Integral

1. On some properties of definite integrals. We prove

arxiv: v1 [math.ca] 11 Jul 2011

Integrals - Motivation

5.2 Volumes: Disks and Washers

7.6 The Use of Definite Integrals in Physics and Engineering

Math 120 Answers for Homework 13

MAA 4212 Improper Integrals

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Math 426: Probability Final Exam Practice

I. INTEGRAL THEOREMS. A. Introduction

We know that if f is a continuous nonnegative function on the interval [a, b], then b

FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems:

II. Integration and Cauchy s Theorem

Mapping the delta function and other Radon measures

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

ROB EBY Blinn College Mathematics Department

Fundamental Theorem of Calculus

Math 5440 Problem Set 3 Solutions

Math& 152 Section Integration by Parts

Transcription:

Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to construct model where we pretend curve does hve density nd mss, for exmple, when nlyzing wire. Although we re now looking curve in plne, tht is mere convenience; nlogs of our results will hold for curves in R 3. Prtitioning the urve If we wished to estimte the mss of the curve, we might prtition the curve into smll pieces nd estimte the mss of ech smll piece by multiplying its density times its length. Although the density my vry, it probbly won t vry much in smll piece of the curve, so we could use the density t ny point in the piece of the curve in our estimte. If the curve hs the prmetriztion x = x(t), y = y(t), t b, prtitioning the curve mounts to tking prtition P = {t 0, t 1, t 2,..., t n } of [, b]. Estimting the Mss For ech i, 1 i n, We could choose some t i [t i 1, t i ] nd use δ(x i, yi ), where x i = x(t i ), yi = y(t i ) s our estimte for the density. We hve previously estimted the rc length ( ) 2 ( ) 2 dy s i + t i, where the derivtives re evluted t t i. We could then estimte the mss m i of the i th piece of the curve by ( ) 2 ( ) 2 dy δ(x i, yi ) + t i, so s n estimte for the entire mss m we would get ( m = n i=1 m i ) 2 n i=1 δ(x i, yi ) + The Line Integrl 1 ( ) 2 dy t i.

( ) 2 ( ) 2 n dy i=1 δ(x i, yi ) + t i is Riemnn Sum, which, if everything is continuous, will pproch the ordinry integrl ( ) 2 ( ) 2 b dy δ(x(t), y(t)) +. This integrl is clled line integrl nd is denoted by δ(x, y) ds. efinition of Line Integrl In generl, given curve with prmetriztion x = x(t), y = y(t), t b nd function f(x, y) defined on the curve, we define ( f(x, y) ds = ) 2 ( ) 2 b dy f(x(t), y(t)) +. In R 3, we would hve, with the nlogous sitution, ( f(x, y, z) ds = ) 2 b f(x(t), y(t), z(t)) + ( ) 2 dy + 2 ( ) 2 dz. Note: This generlizes in the obvious wy to higher dimensions nd there re other types of line integrls. Work Suppose force F(x) is exerted long curve : x(t), t b. Along short intervl of length s, the force won t chnge much nd the mount of work performed will pproximte the tngentil component of the force multiplied by the length of tht short piece of curve. The tngentil component of the force will equl F T, where T is the unit tngent. We thus conclude the totl mount of work my be clculted by the line integrl W = F T ds. Another Look t the Line Integrl Since T = nd ds =, when we evlute the line integrl we get

W = b F = b F, which we my wnt to write s F. Another Type of Line Integrl If we write F =< F x, F y > nd b (F x + F dy y ), or =<, dy >, reclling dy = nd = dy, we might write the integrl s F x + F y dy. This suggests nother type of line integrl, which we might write s P (x, y) + Q(x, y) dy. P (x, y) + Q(x, y) dy If we prtition curve, in ech piece of the curve from (x i 1, y i 1 ) to (x i, y i ) choose point (x i, yi ) nd clculte n i=1 P (x i, yi ) x i + Q(x i, yi ) y i, s limit we will get the line integrl P (x, y) + Q(x, y) dy. To clculte such line integrl, we tke prmetriztion nd clculte b P (x, y) + Q(x, y)dy. Sometimes, it s convenient to split the integrl into the sum P (x, y) + Q(x, y) dy nd use different prmetriztions for ech. Integrls Along Horizontl Line Segments onsider P (x, y) + Q(x, y) dy where is horizontl line segment y = k, x b. In this cse, we cn clculte P (x, y) +Q(x, y) dy = b P (x, k). To see this, use the prmetriztion x = t, y = k, t b, so = 1, dy = 0 nd P (x, y) +Q(x, y) dy = b dy P (x, y) +Q(x, y) = b P (t, k) 1 + Q(t, k) 0 = b P (t, k) = b P (x, k). Integrls Along Verticl Line Segments 3

onsider P (x, y) + Q(x, y) dy where is verticl line segment x = k, y b. In this cse, we cn clculte P (x, y) +Q(x, y) dy = b P (k, y) dy. We cn see this using the prmetriztion x = k, y = t, t b. Integrls Along urves y = f(x) onsider P (x, y) + Q(x, y) dy where is curve y = f(x), x b. In this cse, we my clculte P (x, y) + Q(x, y) dy = b P (x, y) + Q(x, y) dy, where we replce y by f(x). This is shown immeditely using the cnonicl prmetriztion x = t, y = f(t), t b, getting P (x, y) + Q(x, y) dy = b P (x, y) + Q(x, y)dy = b P (x, y) 1 + Q(x, y) dy = b P (t, f(t)) + Q(t, f(t))f (t) = b P (x, f(x)) + Q(x, f(x))f (x). Independence of Pth If, in some domin, 1 P (x, y) + Q(x, y) dy = 2 P (x, y) + Q(x, y) dy whenever 1 nd 2 re piecewise smooth curves with the sme initil nd terminl points, we sy P (x, y) + Q(x, y) dy is independent of pth in. Independence of Pth nd losed urves A closed curve is curve for which the initil nd terminl points coincide. A circle is the simplest exmple of closed curve. It is esily seen tht n integrl P + Q dy is independent of pth in some domin if nd only if P + Q dy = 0 for every closed curve in the domin. The only if prt is obvious. To prove the if prt, suppose 1 nd 2 re two curves in the domin with the sme initl nd terminl points nd let be the curve obtined by first trveling long 1 nd then trveling bckwrds long 2. Then P + Q dy = 0, but lso P + Q dy = 1 P + Q dy 2 P +Q dy, so 1 P +Q dy 2 P +Q dy = 0 nd 1 P + Q dy = 2 P + Q dy. Independence of Pth nd Potentil Functions 4

It cn esily be shown tht P (x, y) + Q(x, y) dy is independent of pth if there exists some potentil function φ(x, y) such tht φ =< P, Q >, i.e. such tht φ x = P, φ y = Q. Suppose such function exists nd goes from (x 1, y 1 ) to (x 2, y 2 ). Let x = f(t), y = g(t), t b be prmetriztion of. We then clculte: P (x, y) + Q(x, y) dy = b φ φ + x y dy = b dφ = [φ(f(t), g(t))] b = φ(f(b), g(b)) φ(f(), g()) = φ(x 2, y 2 ) φ(x 1, y 1 ). This obviously doesn t depend on. A Necessry ondition If φ φ = P nd x y derivtives we get 2 φ y x = P y nd 2 φ x y = Q x. = Q, when we clculte the second prtil If these second prtils re continuous, then they must be equl, so P y = Q x. This is obviously necessry condition for the existence of potentil function φ. It cn be shown this is lso sufficient condition for the integrl P + Q dy to be independent of pth. This will be consequence of Green s Theorem. Green s Theorem Theorem 1 (Green s Theorem). Under suitble hypothesis, given plne region with boundry oriented positively, P +Q dy = Q x P y da. If we hve closed curve bounding region nd Q x = P y, it follows tht P + Q dy = the integrl is independent of pth. Proof of Green s Theorem Q x P y da = 0 da = 0, so 5

We will verify Green s Theorem for some specil curves, but will not give generl proof. We will first ssume region cn be described s {(x, y) f(x) y g(x), x b. We cn then prmetrize the boundry by the union = 1 2 3 4, with 1 is the curve y = f(x), with x going from to b, 2 is the verticl line segment x = b, with y going from f(b) to g(b), 3 is the curve y = g(x), with x going from b to nd 4 is the verticl line segment x =, with y going from g() to f(). Hlf the Integrl Now consider P. We cn split the integrl into four prts. P = 1 P + 2 P + 3 P + 4 P. The portions long the verticl line segments re obviously 0, so we re left with P = 1 P + 3 P = b P (x, f(x)) + P (x, g(x)) = b b P (x, f(x)) b P (x, g(x)) = b P (x, f(x)) P (x, g(x)). But P (x, f(x)) P (x, g(x)) = f(x) P dy, so g(x) y P = b f(x) P g(x) y dy = b g(x) P f(x) y dy = P y da. More on Green s Theorem Essentilly, we hve shown tht if region cn be divided up into verticl strips going between two curves, then P (x, y) = P y da. A similr clcultion shows tht if the sme region cn be divided up into horizontl strips going between two curves, then Q(x, y) dy = Q x da. If the region cn be divided up both wys, we cn dd these integrls together to get P (x, y) + Q(x, y) dy = Q x P y da. Simple losed urves nd Independence of Pth A curve for which the initil nd terminl points coincide is clled closed curve. If those re the only points which coincide, the curve is clled simple closed curve. We will ssume ll our curves re piecewise smooth. 6

lim 1. In domin, P (x, y) + Q(x, y) dy is independent of pth if nd only if P (x, y) + Q(x, y) dy = 0 over ll simple closed curves. lerly, if, P (x, y) +Q(x, y) dy is independent of pth, then for ny closed curve P (x, y) + Q(x, y) dy = 0 since the vlue of the integrl would be the sme if we used degenerte curve. On the other hnd, suppose P (x, y) + Q(x, y) dy = 0 over every simple closed curve nd consider curves 1, 2 with the sme ini- til nd terminl points. Let = 1 ( 2 ). By 2 we men the curve trcing over the sme points s 2 but going in the opposite direction. is closed curve, so P (x, y) + Q(x, y) dy = 0. But P (x, y) + Q(x, y) dy = 1 2 P (x, y) + Q(x, y) dy = 1 P (x, y) + Q(x, y) dy 2 P (x, y) + Q(x, y) dy. It follows tht 1 P (x, y) + Q(x, y) dy = 2 P (x, y) + Q(x, y) dy. Green s Theorem nd Independence of Pth If Q x = P, then over ny simple closed curve, which we my ssume trverses counterclockwise round the boundry of plne region y, P (x, y) + Q(x, y) dy = Q x = P y da = 0 da = 0. It follows immeditely tht if Q x = P y in, then P (x, y) + Q(x, y) dy is independent of pth in. The Other irection Theorem 2. If P (x, y) + Q(x, y) dy is independent of pth in, then Q x = P in. y We cn prove this by finding potentil function φ(x, y) such tht φ =< P, Q >, i.e. such tht φ x = P, φ y = Q. To define φ(x, y), tke n rbitrry point (x 0, y 0 ) in nd let φ(x, y) = P (x, y) +Q(x, y) dy, where is ny smooth curve in going from (x 0, y 0 ) to (x, y). This is n unmbiguous definition, since the integrl is independent of pth. If we tke curve where the lst prt is horizontl line segment, we x+h φ(x, y) φ(x + h, y) φ(x, y) P (t, y) x get = lim h 0 = lim h 0 x h h 7