This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Similar documents
M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

20. Alternating Currents

05. Electric Potential I

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

14. Magnetic Field III

02. Electric Field II

13. Magnetic Field II

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Chapter 28. Direct Current Circuits

01. Introduction and Electric Field I

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Lecture #3. Review: Power

19. LC and RLC Oscillators

AP Physics C. Electric Circuits III.C

03. Electric Field III and Electric Flux

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Version 001 CIRCUITS holland (1290) 1

I(t) R L. RL Circuit: Fundamentals. a b. Specifications: E (emf) R (resistance) L (inductance) Switch S: a: current buildup. b: current shutdown

Electricity & Magnetism

Chapter 27. Circuits

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Circuits Practice Websheet 18.1

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

IMPORTANT Read these directions carefully:

Chapter 28. Direct Current Circuits

ANNOUNCEMENT ANNOUNCEMENT

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Physics for Scientists & Engineers 2

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

Circuits. David J. Starling Penn State Hazleton PHYS 212

PHYS 2135 Exam II March 20, 2018

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Direct Current Circuits

Problem Solving 8: Circuits

Chapter 28 Solutions

Chapter 26 Direct-Current Circuits

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

Class 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRL-L to view as a slide show. Class 8. Physics 106.

Chapter 7 Direct-Current Circuits

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

Chapter 21 Electric Current and Direct- Current Circuits

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1

EXPERIMENT 12 OHM S LAW

Chapter 25 Current Resistance, and Electromotive Force

MasteringPhysics: Assignment Print View. Problem 30.50

Lecture 39. PHYC 161 Fall 2016

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Parallel Resistors (32.6)

Parallel Resistors (32.6)

Physics 2020 Exam 2 Constants and Formulae

PHYS 1444 Section 003 Lecture #12

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:

Physics 42 Exam 2 PRACTICE Name: Lab

Physics 2135 Exam 2 October 20, 2015

Chapter 18 Electric Currents

Power lines. Why do birds sitting on a high-voltage power line survive?

Circuits. PHY2054: Chapter 18 1

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Physics 6B Summer 2007 Final

Chapter 28. Direct Current Circuits


Physics 102 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005

R R V I R. Conventional Current. Ohms Law V = IR

AP Physics C - E & M

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Physics 102 Spring 2007: Final Exam Multiple-Choice Questions

Chapter 3: Electric Current and Direct-Current Circuit

Physics 212 Midterm 2 Form A

Slide 1 / 26. Inductance by Bryan Pflueger

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.

Voltage Dividers, Nodal, and Mesh Analysis

Physics 2401 Summer 2, 2008 Exam II

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ConcepTest PowerPoints

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

PEP 2017 Assignment 12

SPS Presents: A Cosmic Lunch!

Chapter 3: Electric Current And Direct-Current Circuits

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions

Application of Physics II for. Final Exam

A positive value is obtained, so the current is counterclockwise around the circuit.

PHY102 Electricity Course Summary

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

Chapter 26 Direct-Current Circuits

PHYS 272 (Spring 2018): Introductory Physics: Fields Problem-solving sessions

Transcription:

University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 10. Resistors II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. Follow this and additional works at: http://digitalcommons.uri.edu/elementary_physics_2 Abstract Part ten of course materials for Elementary Physics II (PHY 204), taught by Gerhard Müller at the University of Rhode Island. Documents will be updated periodically as more entries become presentable. Some of the slides contain figures from the textbook, Paul A. Tipler and Gene Mosca. Physics for Scientists and Engineers, 5 th /6 th editions. The copyright to these figures is owned by W.H. Freeman. We acknowledge permission from W.H. Freeman to use them on this course web page. The textbook figures are not to be used or copied for any purpose outside this class without direct permission from W.H. Freeman. Recommended Citation Müller, Gerhard, "10. Resistors II" (2015). PHY 204: Elementary Physics II. Paper 17. http://digitalcommons.uri.edu/elementary_physics_2/17 This Course Material is brought to you for free and open access by the Physics Course Materials at DigitalCommons@URI. It has been accepted for inclusion in PHY 204: Elementary Physics II by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29]

Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance R, the electric potential drops: V = IR. EMF rule: From the ( ) terminal to the (+) terminal in an ideal source of emf, the potential rises: V = E. Loop rule: The algebraic sum of the changes in potential encountered in a complete traversal of any loop in a circuit must be zero: P V i = 0. physical system circuit diagram electric potential a b + emf I a ε b V a IR ε I R V b a b a 18/9/2015 [tsl143 2/29]

Battery with Internal Resistance Real batteries have an internal resistance r. The terminal voltage V ba V a V b is smaller than the emf E written on the label if a current flows through the battery. Usage of the battery increases its internal resistance. Current from loop rule: E Ir IR = 0 I = E R + r Current from terminal voltage: V ba = E Ir = IR I = V ba R physical system circuit diagram electric potential a b + emf a I r ε b V a IR ε Ir I R V b a b a. 18/9/2015 [tsl144 3/29]

Symbols Used in Cicuit Diagrams R resistor A ammeter (connect in series) C capacitor V voltmeter (connect in parallel) L inductor diode ε emf source E C transistor B 18/9/2015 [tsl158 4/29]

Resistor Circuit (4) Consider the resistor circuit shown. (a) Find the direction of the current I (cw/ccw). (b) Find the magnitude of the current I. (c) Find the voltage V ab = V b V a. (d) Find the voltage V cd = V d V c. d c 12V b a 18/9/2015 [tsl151 5/29]

Resistor Circuit (5) Consider the resistor circuit shown. (a) Find the direction (cw/ccw) of the current I in the loop. (b) Find the magnitude of the current I in the loop. (c) Find the potential difference V ab = V b V a. (d) Find the voltage V cd = V d V c. d a 12V 3Ω 7Ω 4Ω 4V b c 18/9/2015 [tsl152 6/29]

Resistor Circuit (6) Consider the resistor circuit shown. (a) Guess the current direction (cw/ccw). (b) Use the loop rule to determine the current. (c) Find V ab V b V a along two different paths. b 18V 6V a 12V 24V 18/9/2015 [tsl153 7/29]

Resistors Connected in Parallel Find the equivalent resistance of two resistors connected in parallel. Current through resistors: I 1 + I 2 = I Voltage across resistors: V 1 = V 2 = V Equivalent resistance: 1 R = 1 R 1 + 1 R 2 1 R I V = I 1 V 1 + I 2 V 2 V 0 R 1 V 1 = V x I 1 V0 V 0 + V I 2 R 2 V 0 V = V 2 x 18/9/2015 [tsl145 8/29]

Resistors Connected in Series Find the equivalent resistance of two resistors connected in series. Current through resistors: I 1 = I 2 = I Voltage across resistors: V 1 + V 2 = V Equivalent resistance: R V I = V 1 I 1 + V 2 I 2 R = R 1 + R 2 V 2 V 0 V 1 x V 0 R 1 R 2 V + V 0 I I 18/9/2015 [tsl146 9/29]

Resistor Circuit (1) Consider the two resistor circuits shown. (a) Find the resistance R 1. (b) Find the emf E 1. (c) Find the resistance R 2. (d) Find the emf E 2. 2A 1A R 1 1A 2A 6Ω R 2 ε 1 ε 2 18/9/2015 [tsl148 10/29]

Resistor Circuit (2) Consider the two resistor circuits shown. (a) Find the resistance R 1. (b) Find the current I 1. (c) Find the resistance R 2. (d) Find the current I 2. R1 I 2 3Ω 3A I 1 6Ω R 2 3A 12V 12V 18/9/2015 [tsl149 11/29]

Resistor Circuit (3) Consider the rsistor and capacitor circuits shown. (a) Find the equivalent resistance R eq. (b) Find the power P 2, P 3, P 4 dissipated in each resistor. (c) Find the equivalent capacitance C eq. (d) Find the energy U 2, U 3, U 4 stored in each capacitor. 4Ω 2nF 4nF 3Ω 3nF 12V 12V 18/9/2015 [tsl150 12/29]

Power in Resistor Circuit Battery in use b Terminal voltage: V ab = E Ir = IR Power output of battery: P = V ab I = EI I 2 r Power generated in battery: EI Power dissipated in battery: I 2 r ε r R Power dissipated in resistor: P = I 2 R a Battery being charged: Terminal voltage: V ab = E + Ir Power supplied by charging device: P = V ab I Power input into battery: P = EI + I 2 r Power stored in battery: EI Power dissipated in battery: I 2 r b a ε r charging device 18/9/2015 [tsl154 13/29]

Resistor Circuit (7) Consider two 24V batteries with internal resistances (a) r = 4Ω, (b) r =. Which setting of the switch (L/R) produces the larger power dissipation in the resistor on the side? L R L R 4Ω 4Ω 24V 4Ω 24V (a) (b) 18/9/2015 [tsl155 14/29]

Impedance Matching A battery providing an emf E with internal resistance r is connected to an external resistor of resistance R as shown. For what value of R does the battery deliver the maximum power to the external resistor? Electric current: E Ir IR = 0 I = E R + r Power delivered to external resistor: P = I 2 R = Condition for maximum power: dp dr = 0 r ε R = r E2 R (R + r) 2 I R 18/9/2015 [tsl156 15/29]

Resistor Circuit (8) Consider the circuit of resistors shown. Find the equivalent resistance R eq. Find the currents I 1,..., I 5 through each resistor and the voltages V 1,..., V 5 across each resistor. Find the total power P dissipated in the circuit. R = 1 6Ω R = 1 2 R = 4Ω 3 R = 3Ω R = 4 5 5Ω ε = 12V 18/9/2015 [tsl157 16/29]

Kirchhoff s Rules Loop Rule When any closed-circuit loop is traversed, the algebraic sum of the changes in electric potential must be zero. Junction Rule At any junction in a circuit, the sum of the incoming currents must equal the sum of the outgoing currents. Strategy Use the junction rule to name all independent currents. Use the loop rule to determine the independent currents. 18/9/2015 [tsl159 17/29]

Applying the Junction Rule In the circuit of steady currents, use the junction rule to find the unknown currents I 1,..., I 6. 1A Ι 2 3A Ι 1 Ι 3 Ι 4 Ι 5 4A 9A Ι 6 + ε 18/9/2015 [tsl160 18/29]

Applying Kirchhoff s Rules Consider the circuit shown below. Junction a: I 1, I 2 (in); Junction b: I 1 + I 2 (in); I 1 + I 2 (out) I 1, I 2 (out) Two independent currents require the use of two loops. Loop A (ccw): 6V ()I 1 2V ()I 1 = 0 Loop B (ccw): (3Ω)I 2 + 1V + ()I 2 6V = 0 Solution: I 1 = 1A, I 2 = 1A I1 I 2 b I + I 1 2 2V A 6V B 1V a I + I 1 2 I 1 I 2 3Ω 18/9/2015 [tsl161 19/29]

Resistor Circuit (11) Consider the electric circuit shown. Identify all independent currents via junction rule. Determine the independent currents via loop rule. Find the Potential difference V ab = V b V a. a 4V 4V 2V b 18/9/2015 [tsl164 20/29]

Resistor Circuit (9) Use Kirchhoff s rules to find (a) the current I, (b) the resistance R, (c) the emf E, (d) the voltage V ab V b V a. b I 18V R 1A ε 6A a 18/9/2015 [tsl162 21/29]

Resistor Circuit (10) Consider the electric circuit shown. (a) Find the current through the 12V battery. (b) Find the current through the resistor. (c) Find the total power dissipated. (d) Find the voltage V cd V d V c. (e) Find the voltage V ab V b V a. c 4V a 12V d 3Ω b 18/9/2015 [tsl163 22/29]

Resistor Circuit (12) Consider the electric circuit shown. Find the equivalent resistance R eq of the circuit. Find the total power P dissipated in the circuit. 3Ω 13V 18/9/2015 [tsl165 23/29]

More Complex Capacitor Circuit No two capacitors are in parallel or in series. Solution requires different strategy: zero charge on each conductor (here color coded), zero voltage around any closed loop. Specifications: C 1,..., Q 5, V. Five equations for unknowns Q 1,..., Q 5 : Q 1 + Q 2 Q 4 Q 5 = 0 Q 3 + Q 4 Q 1 = 0 Q 5 C 5 + Q 3 C 3 Q 4 C 4 = 0 Q 2 C 2 Q 1 C 1 Q 3 C 3 = 0 V Q 1 C 1 Q 4 C 4 = 0 Equivalent capacitance: C eq = Q 1 + Q 2 V + + C 1 + C 4 C 2 C 3 V + + C 5 (a) C m = 1pF, m = 1,..., 5 and V = 1V: C eq = 1pF, Q 3 = 0, Q 1 = Q 2 = Q 4 = Q 5 = 1 2 pc. (b) C m = m pf, m = 1,..., 5 and V = 1V: C eq = 159 71 pf, Q 1 = 55 71 pc, Q 2 = 104 71 pc, Q 3 = 9 71 pc, Q 4 = 64 71 pc, Q 5 = 95 71 pc. 18/9/2015 [tsl511 24/29]

Intermediate Exam II: Problem #2 (Spring 05) Consider the electrical circuit shown. (a) Find the equivalent resistance R eq. (b) Find the current I 3 through resistor R 3. R = 2 12V R = 3 3Ω R = 6 6Ω 18/9/2015 [tsl337 25/29]

Intermediate Exam II: Problem #2 (Spring 05) Consider the electrical circuit shown. (a) Find the equivalent resistance R eq. (b) Find the current I 3 through resistor R 3. R = 2 12V R = 3 3Ω R = 6 6Ω Solution: (a) R 36 = 1 R 3 + 1 R 6 «1 =, R eq = R 2 + R 36 = 4Ω. 18/9/2015 [tsl337 25/29]

Intermediate Exam II: Problem #2 (Spring 05) Consider the electrical circuit shown. (a) Find the equivalent resistance R eq. (b) Find the current I 3 through resistor R 3. R = 2 12V R = 3 3Ω R = 6 6Ω Solution: (a) R 36 = 1 R 3 + 1 R 6 (b) I 2 = I 36 = 12V R eq = 3A «1 =, R eq = R 2 + R 36 = 4Ω. V 3 = V 36 = I 36 R 36 = 6V I 3 = V 3 R 3 = 2A. 18/9/2015 [tsl337 25/29]

Intermediate Exam II: Problem #2 (Spring 06) Consider the two-loop circuit shown. (a) Find the current I 1. (b) Find the current I 2. 2V 10V I 1 3Ω I 2 18/9/2015 [tsl352 26/29]

Intermediate Exam II: Problem #2 (Spring 06) Consider the two-loop circuit shown. (a) Find the current I 1. (b) Find the current I 2. 2V 10V I 1 Solution: (a) ()(I 1 ) + 10V ()(I 1 ) 2V = 0 I 1 = 8V 4Ω = 2A. 3Ω I 2 18/9/2015 [tsl352 26/29]

Intermediate Exam II: Problem #2 (Spring 06) Consider the two-loop circuit shown. (a) Find the current I 1. (b) Find the current I 2. 2V 10V I 1 Solution: 3Ω I 2 (a) ()(I 1 ) + 10V ()(I 1 ) 2V = 0 (b) ()(I 2 ) + 10V ()(I 2 ) (3Ω)(I 2 ) = 0 I 1 = 8V 4Ω = 2A. I 2 = 10V 7Ω = 1.43A. 18/9/2015 [tsl352 26/29]

Unit Exam II: Problem #2 (Spring 07) Consider the electric circuit shown. (a) Find the current I when the switch S is open. (b) Find the power P 3 dissipated in resisistor R 3 when the switch is open. (c) Find the current I when the switch S is closed. (d) Find the power P 3 dissipated in resisistor R 3 when the switch is closed. R 1 = 4Ω R 2 = 4Ω I 24V S R 3 = 4Ω 18/9/2015 [tsl363 27/29]

Unit Exam II: Problem #2 (Spring 07) Consider the electric circuit shown. (a) Find the current I when the switch S is open. (b) Find the power P 3 dissipated in resisistor R 3 when the switch is open. (c) Find the current I when the switch S is closed. (d) Find the power P 3 dissipated in resisistor R 3 when the switch is closed. Solution: (a) I = 24V 8Ω = 3A. I R 1 = 4Ω R 2 = 4Ω 24V S R 3 = 4Ω 18/9/2015 [tsl363 27/29]

Unit Exam II: Problem #2 (Spring 07) Consider the electric circuit shown. (a) Find the current I when the switch S is open. (b) Find the power P 3 dissipated in resisistor R 3 when the switch is open. (c) Find the current I when the switch S is closed. (d) Find the power P 3 dissipated in resisistor R 3 when the switch is closed. Solution: (a) I = 24V 8Ω = 3A. (b) P 3 = (3A) 2 (4Ω) = 36W. I R 1 = 4Ω R 2 = 4Ω 24V S R 3 = 4Ω 18/9/2015 [tsl363 27/29]

Unit Exam II: Problem #2 (Spring 07) Consider the electric circuit shown. (a) Find the current I when the switch S is open. (b) Find the power P 3 dissipated in resisistor R 3 when the switch is open. (c) Find the current I when the switch S is closed. (d) Find the power P 3 dissipated in resisistor R 3 when the switch is closed. Solution: (a) I = 24V 8Ω = 3A. (b) P 3 = (3A) 2 (4Ω) = 36W. (c) I = 24V 6Ω = 4A. I R 1 = 4Ω R 2 = 4Ω 24V S R 3 = 4Ω 18/9/2015 [tsl363 27/29]

Unit Exam II: Problem #2 (Spring 07) Consider the electric circuit shown. (a) Find the current I when the switch S is open. (b) Find the power P 3 dissipated in resisistor R 3 when the switch is open. (c) Find the current I when the switch S is closed. (d) Find the power P 3 dissipated in resisistor R 3 when the switch is closed. Solution: (a) I = 24V 8Ω = 3A. (b) P 3 = (3A) 2 (4Ω) = 36W. (c) I = 24V 6Ω = 4A. (d) P 3 = (2A) 2 (4Ω) = 16W. I R 1 = 4Ω R 2 = 4Ω 24V S R 3 = 4Ω 18/9/2015 [tsl363 27/29]

Unit Exam II: Problem #2 (Spring 09) Consider the resistor circuit shown. (a) Find the equivalent resistance R eq. (b) Find the power P supplied by the battery. (c) Find the current I 4 through the 4Ω-resistor. (d) Find the voltage V 2 across the -resistor. 3Ω 4Ω 3Ω 24V 18/9/2015 [tsl393 28/29]

Unit Exam II: Problem #2 (Spring 09) Consider the resistor circuit shown. (a) Find the equivalent resistance R eq. (b) Find the power P supplied by the battery. (c) Find the current I 4 through the 4Ω-resistor. (d) Find the voltage V 2 across the -resistor. Solution: (a) R eq = 8Ω. 3Ω 4Ω 3Ω 24V 18/9/2015 [tsl393 28/29]

Unit Exam II: Problem #2 (Spring 09) Consider the resistor circuit shown. (a) Find the equivalent resistance R eq. (b) Find the power P supplied by the battery. (c) Find the current I 4 through the 4Ω-resistor. (d) Find the voltage V 2 across the -resistor. Solution: (a) R eq = 8Ω. 3Ω 4Ω 3Ω (b) P = (24V)2 8Ω = 72W. 24V 18/9/2015 [tsl393 28/29]

Unit Exam II: Problem #2 (Spring 09) Consider the resistor circuit shown. (a) Find the equivalent resistance R eq. (b) Find the power P supplied by the battery. (c) Find the current I 4 through the 4Ω-resistor. (d) Find the voltage V 2 across the -resistor. Solution: (a) R eq = 8Ω. 3Ω 4Ω 3Ω (b) P = (24V)2 8Ω = 72W. (c) I 4 = 1 2 24V 8Ω = 1.5A. 24V 18/9/2015 [tsl393 28/29]

Unit Exam II: Problem #2 (Spring 09) Consider the resistor circuit shown. (a) Find the equivalent resistance R eq. (b) Find the power P supplied by the battery. (c) Find the current I 4 through the 4Ω-resistor. (d) Find the voltage V 2 across the -resistor. Solution: (a) R eq = 8Ω. 3Ω 4Ω 3Ω (b) P = (24V)2 8Ω = 72W. (c) I 4 = 1 24V 2 8Ω = 1.5A. (d) V 2 = (1.5A)() = 3V. 24V 18/9/2015 [tsl393 28/29]

Unit Exam II: Problem #3 (Spring 07) Consider the two-loop circuit shown. (a) Find the current I 1. (b) Find the current I 2. (c) Find the potential difference V a V b. 10V 6V a 7Ω 8V 9Ω b I I 1 2 18/9/2015 [tsl364 29/29]

Unit Exam II: Problem #3 (Spring 07) Consider the two-loop circuit shown. (a) Find the current I 1. (b) Find the current I 2. (c) Find the potential difference V a V b. 10V 6V a Solution: 7Ω 8V 9Ω (a) I 1 = 8V + 10V 7Ω = 2.57A. b I I 1 2 18/9/2015 [tsl364 29/29]

Unit Exam II: Problem #3 (Spring 07) Consider the two-loop circuit shown. (a) Find the current I 1. (b) Find the current I 2. (c) Find the potential difference V a V b. 10V 6V a Solution: 7Ω 8V 9Ω (a) I 1 = (b) I 2 = 8V + 10V = 2.57A. 7Ω 8V 6V = 0.22A. 9Ω b I I 1 2 18/9/2015 [tsl364 29/29]

Unit Exam II: Problem #3 (Spring 07) Consider the two-loop circuit shown. (a) Find the current I 1. (b) Find the current I 2. (c) Find the potential difference V a V b. 10V 6V a Solution: 7Ω 8V 9Ω 8V + 10V (a) I 1 = = 2.57A. 7Ω 8V 6V (b) I 2 = = 0.22A. 9Ω (c) V a V b = 8V 6V = 2V. b I I 1 2 18/9/2015 [tsl364 29/29]