Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot using Parametric Interpolation

Similar documents
The Mathematics of Harmonic Oscillators

Generalized Half Linear Canonical Transform And Its Properties

Chapter 4 A First Analysis of F edback edbac

Wave Phenomena Physics 15c

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

Chapter 7 Stead St y- ate Errors

Designing a cost-time-quality-efficient grinding process using MODM methods

SYMMETRICAL COMPONENTS

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

Introduction to Laplace Transforms October 25, 2017

Conventional Hot-Wire Anemometer

Consider a system of 2 simultaneous first order linear equations

1 Finite Automata and Regular Expressions

CIVL 7/ D Boundary Value Problems - Quadrilateral Elements (Q8) 1/9

Chapter 5 Transient Analysis

The Variance-Covariance Matrix

Math 266, Practice Midterm Exam 2

Statistical Analysis of Environmental Data - Academic Year Prof. Fernando Sansò

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Jonathan Turner Exam 2-10/28/03

A simple 2-D interpolation model for analysis of nonlinear data

Copyright A.Milenin, 2017, AGH University of Science and Technology

Relation between Fourier Series and Transform

Overview. Splay trees. Balanced binary search trees. Inge Li Gørtz. Self-adjusting BST (Sleator-Tarjan 1983).

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

Advanced Queueing Theory. M/G/1 Queueing Systems

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Analysis of Laser-Driven Particle Acceleration from Planar Transparent Boundaries *

On the Existence and uniqueness for solution of system Fractional Differential Equations

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Introduction to Inertial Dynamics

10.5 Linear Viscoelasticity and the Laplace Transform

Title. Author(s)Ito, Yasuhisa; Igarashi, Hajime. CitationIEEE Transactions on Magnetics, 49(5): Issue Date Doc URL. Rights.

Filter Design Techniques

ScienceDirect. ScienceDirec

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-chip RLC Interconnect Load

G. Ayyappan 1, J. Udayageetha 2

Control Systems (Lecture note #7)

Section 3: Antiderivatives of Formulas

A L A BA M A L A W R E V IE W

Adaptive PID Controller for Dc Motor Speed Control

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d.

HIGHER ORDER DIFFERENTIAL EQUATIONS

Homework: Introduction to Motion

Overview. Splay trees. Balanced binary search trees. Inge Li Gørtz. Self-adjusting BST (Sleator-Tarjan 1983).

Grand Canonical Ensemble

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

Exponential Stability Analysis of a System Comprised of a Robot and its Associated Safety Mechanism

A Simple Representation of the Weighted Non-Central Chi-Square Distribution

V A. V-A ansatz for fundamental fermions

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1

J = 1 J = 1 0 J J =1 J = Bout. Bin (1) Ey = 4E0 cos(kz (2) (2) (3) (4) (5) (3) cos(kz (1) ωt +pπ/2) (2) (6) (4) (3) iωt (3) (5) ωt = π E(1) E = [E e

Performance Implications of Tolerating Cache Faults

Root behavior in fall and spring planted roses...

T h e C S E T I P r o j e c t

3.4 Repeated Roots; Reduction of Order

NON-LINEAR ANALYSIS OF PIEZOLAMINATED STRUCTURES

A H C H. for the homeless WRIGHT AND HAMMER FIRST STREET CAMPUS EXPANSION 1220 FIRST STREET, NW ALBUQUERQUE, NEW MEXICO. CITY OF ALBUQUERQUE - estamp

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTEGRAL TRANSFORM METHODS FOR SOLVING FRACTIONAL PDES AND EVALUATION OF CERTAIN INTEGRALS AND SERIES

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Chapter 6 Plane Motion of Rigid Bodies

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

- Double consonant - Wordsearch 3

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

Valuation of a Basket Loan Credit Default Swap

NUCON NRNON CONRNC ON CURRN RN N CHNOOGY, 011 oo uul o w ul x ol volv y y oll. y ov,., - o lo ll vy ul o Mo l u v ul (G) v Gl vlu oll. u 3- [11]. 000

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz

Eastern Progress - 3 Mar 1923

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Analytical Study of a Special Case of Complex Canonical Transform

2. The Laplace Transform

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Trigonometric Formula

P a g e 5 1 of R e p o r t P B 4 / 0 9

CHAPTER-2. S.No Name of the Sub-Title No. 2.5 Use of Modified Heffron Phillip's model in Multi- Machine Systems 32

Physics 15 Second Hour Exam

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Chapter 14: Optical Parametric Oscillators

The Equity Index Skew and Asymmetric Normal Mixture GARCH

U1. Transient circuits response

Higher Order Binaries with Time Dependent Coefficients and Two Factors - Model for Defaultable Bond with Discrete Default Information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

SCOUT DIRECTOR. %$*r' III uiun yunuinui TONIGHT FOR WORK. Newuk Ctititetut- Admission SO Centg. ef Mlit UHt. Oae Asmsar Riy Pretest Three Ranbtn

PHY2053 Summer C 2013 Exam 1 Solutions

Period vs. Length of a Pendulum

Engine Thrust. From momentum conservation

TOPIC 5: INTEGRATION

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

EE Control Systems LECTURE 11

Server breakdown and repair, Multiple vacation, Closedown, Balking and Stand-by server.

Canonical Quantizing of Spinor Fields: Anti-Commutation Relations

Transcription:

Hybr Moon Blnng Algorhm of 3-Ax SCARA Robo ung Prmrc Inrpolon Auhor: J Hun Ju Won J Chung K Bom Pr Song Jo L K Sng L School of Mchronc, Chngwon Nonl Unvry Eml: uh87@n.com Tl: +8-55-67-38, Fx: +8-55-63-5 Ar: School of Mchronc, Chngwon Nonl Unvry Chngwon, 64-773, Souh Kor ABSTRACT In orr o mplmn connuou-ph moon on robo, ncry o bln on on moon o nohr on moon nr v pon n rpzol form of on vlocy. Fr, h vlocy uprpoon ung prmrc nrpolon propo. Hybr moon blnng fn h blnng of ffrn wo yp moon uch blnng of on moon wh lnr moon, n h nghborhoo of v pon. Scon, hybr moon blnng lgorhm propo b on vlocy uprpoon ung prmrc nrpolon. By ung 3- x SCARA (Slcv Complnc Ambly Robo Arm) robo wh LbVIEW conrollr [], h vlocy uprpoon lgorhm ung prmrc nrpolon hown o rul n l vbron, compr wh PTP (Pon- To-Pon) moon n Km lgorhm []. Morovr, h hybr moon lgorhm mplmn on h robo ung LbVIEW [] progrmmng, whch confrm by howng h n-ffcor ph of on-lnr hybr moon. Kywor: Vlocy uprpoon, prmrc nrpolon, Hybr moon blnng, 3-x SCARA Robo, Connuouph. INTRODUCTION In gnrl, h movmn rgy of nurl robo cn b v no wo n,.., PTP (Pon o Pon) n CP (Connuou Ph) [3]. Erly nurl robo n m proucon ln hv bn mnly u for mpl n rv ob n whch PTP moon nough. In rcn, nurl robo whch houl b co-wor wh mchn ool r ncrngly n for prformng vrou ob, wll mpl hnlng or wlng. Accorngly, n orr o cop wh hgh-p hnlng of worpc for h coopron of nurl robo wh mchn ool or ohr vc, CP houl b mplmn o o ruc vbron n no, wll crng opron m. A hown n Fg. -(), h PTP moon cn rul n ll moon v pon. Whr, v pon rfrnc for plnnng nw ph from rng pon o nng pon whou ny ll moon. () PTP moon (b) CP moon Fg. PTP moon v. CP moon In orr o mplmn CP moon on robo, ncry o bln on on moon o nohr on moon nr h v pon n rpzol form of on vlocy hown n Fg.. In pcfc, blnng moon mn h uprpoon of h vlocy (rpzol) profl of on on moon gmn on nohr on moon gmn n rm of m, n h nrby of v pon. A rul, boh h cr of movng m n h rucon of vbron cn b obn. Km [] propo h blnng moon lgorhm, conrng ll h c of uprpoon. Bu Km lgorhm cnno prov hybr moon blnng uch blnng of on moon wh lnr moon bcu ffcv only for homognou blnng of on moon wh on moon. Hr h lnr moon mn h moon of whch on ngl (or vrbl) houl b obn from nvr nmc, gvn h lnr ph of n n-ffcor.

Jon Vlocy P P = MAX () ( mx cclfcor) P P = MAX (3) ( mx clfcor) Tm Fg. Suprpoon of vlocy In h ppr, hybr moon blnng lgorhm nclung vlocy uprpoon propo by ung prmrc nrpolon. By ung 3-x SCARA robo wh LbVIEW conrollr, h mpl lgorhm hown o rul n l vbron, compr wh PTP moon n Km lgorhm. Morovr, h hybr moon lgorhm mplmn on h robo ung LbVIEW progrmmng, whch confrm by howng h n-ffcor ph of on-lnr hybr moon.. VELOCITY SUPERPOSITION USING PARAMETRIC INTERPOLATION For vlocy uprpoon, h boh cclron/clron m n conn-p m houl b h m for ll h on of robo. Th cn rul n mooh moon wh low vbron. Th vlocy uprpoon ung prmrc nrpolon cn b r by fnng h m,, whch pcf p whou cclron n clron con: ( + ) = (4) whr mx h mxmum cclron for h -h on; mx h mxmum clron for h -h on. Th cclfcor n clfcor r h conn rngng 0 o. Th ol m of movmn,, gv by = + + (5) ol ( ) Whn + <, h ngv vlu from quon (4). In h c, o b 0, whch chng h rpzol vlocy profl no rngulr on. Thn quon (4) bcom + = (6) If w um mx cclfcor =, quon () bcom ol P P = V (pfcor [0,]) () mx pfcor P P = (7) whr h numbr of on; n, r h n n r pon, rpcvly; V mx h mxmum p of h -h on. Th pfcor conn rngng from 0 o. For xmpl, Spfcor cn b lc 0.7 whn r p o b 70% of h mxmum on p. Nx, h mxmum of ( =,, n, n: h numbr of on gr of from),.., cn b lc, whch cn b u for clculng h long cclron m, conn-p m, h long clron m (whch r llur n Fg. ) ung quon (), (3) n (4), rpcvly. P P whr nc h on numbr corrponng o h long cclron m. Smlrly, f w uppo mx clfcor =, quon (3) l o P P = (8) whr no h on numbr corrponng o h long clron m. W cn ly fn by olvng h quon (6), (7) n (8). Conqunly w hv P P = (9) ( P P + P P ) P P = (0) ( P P + P P ) Fg. Trpzol vlocy profl

B on quon (9) n (0) whch m boh cclron n clron m b h m for ll h on, h prmr u() cn b nrouc follow: P ( u( )) = P u( )( P P ), u [0,] () whr u() pn from 0 o, hvng y rol of ynchronzng ll h on n cclron n clron m. Hr nc h numbr of on x; P no h n poon of -h on, P no h r poon of -h on. I cn b worh nocng h u() P, whl u() 0 P. Epclly h prmr u() no h ro of h mov nc l urng lp m o h ol movmn L, whch cn b fn by l u( ) = () L 3: C ol ol ( ol ) u( ) = (6) ( + + ) By ubung quon (4), (5) n (6) o quon (), h poon of -h on m cn b clcul by ung h prmr u(). Rfrrng o Fg. 4, h vlocy uprpoon ung prmrc nrpolon cn b propo follow: 0 < b P u ( )) = P v u ( )( P P ) (7) ( < b b v P ( u( ), u( ) = P u )( v P ) u ( )( P P ) (8) ( v v Th mnng of l n L r llur n Fg. 3. I houl b noc h h prmr u() cn b ppl o ll h on mulnouly. 3 b P ol u ( )) = P v u ( )( P P ) (9) ( v v Tol movmn = L whr h ubcrp v no h v pon. Th ubcrp, n 3 mn h con, n 3, rpcvly, hown n Fg. 4. Th uprpoon m, b < b, houl b lc h l m bwn h clron m of h prcng rpzol vlocy profl n h cclron m of h followng on. Vlocy 3 Fg. 3 Mnng of l n L Th ol movmn L cn b ly rv follow: L = v + v + v (3) whr v nc h conn-vlocy hown n Fg. 3. Th prmr u() cn obn for 3 c follow: C : 0 < u( ) = (4) ( + + ) C : < ol u ( ) = (5) ( + + ) b Fg. 4 Concp of vlocy uprpoon Tm Whn compr wh Km blnng lgorhm, h propo vlocy uprpoon lgorhm ung prmrc nrpolon mor conc bcu o no hv o conr ll h c of uprpoon. Morovr h con of xprmn wll how h h propo lgorhm cn rul n l vbron whn mplmn on 3-x SCARA robo, n compron wh Km blnng lgorhm of on moon. b ol

3. HYBRID MOTION BLENDING ALGORITHM USING PARAMETRIC INTERPOLATION A mnon n Scon, hybr moon blnng fn h blnng of ffrn wo yp moon uch blnng of on moon wh lnr moon, n h nghborhoo of v pon. In h ppr, hybr moon blnng lgorhm propo b on vlocy uprpoon ung prmrc nrpolon. Th yp of moon cn b clf no 3 cgor; on moon, lnr moon, n crculr moon. In h ppr, on n lnr moon r xcluvly lc for xplnon. Rfrrng o quon (), on moon gmn cn b crb by PTP moon n Km lgorhm []. Th on-lnr (hybr) moon blnng wll b lo xprmn on h robo o h h blnng moon wll b hown o rc on-lnr ph. In vnc, ncry o ummrz Km lgorhm [] n h followng. For h vlocy uprpoon of h fr rpzol vlocy profl wh h con on hown n Fg. 5, Km lgorhm compo of 8 c hown n Fg. 5. In prculr, Fg. 6-(c) llur h c n whch h rcon of wo vlocy profl r oppo o ch ohr,.., (v_mx) (v_mx) < 0. Hr v_mx n v_mx r h conn p of h fr n h con vlocy profl, rpcvly, hown n Fg. 5. J ( u( )) = J u( )( J J ), u [0,] (0) whr J(u()) no on poon; h ubcrp n nc n n r, rpcvly. Smlrly, lnr moon gmn cn b gvn by L( u( )) = P u( )( P P ), u [0,] () whr L(u()) no poon of n n-ffcor n Crn coorn. Epclly P n P nc h n n r poon of h n-ffcor n Crn coorn. Equon cn b r-wrn n on coorn follow: : m from r pon o v pon : m from v pon o n pon Fg. 5 Concp o f Km blnng J ( u( )) = InvKn( L( u( ))) = InvKn( P u( )( P P )), u [0,] () whr InvKn( ) no h nvr nmc roun. Th propo hybr moon blnng houl b mplmn n on coorn on h b of m x. For xmpl, h ( )-h on moon gmn n h - h lnr moon gmn cn b bln n on coorn follow: J B ( u ( ), u ( )) = InvKn( L( u ( ))) + J ( u ( )) J (3) = InvKn( L( u ( ))) u ( )( J,, J, ) () [Fr clron m Scon cclron m] whr h uprcrp no h numbr of on x. 4. EXPERIMENT In orr o llur h ffcvn of h propo hybr moon blnng, h vlocy uprpoon ung prmrc nrpolon (cn b rm on-on moon blnng), whch b of hybr moon blnng, wll b xprmn on h 3-x SCARA [4] robo wh LbVIEW conrollr n compr wh h rul of boh (b) [Fr clron m > Scon cclron m]

y x (c) (v_mx) (v_mx) < 0 40mm 00mm Fg. 6 8 c of uprpoon for Km lgorhm In h mnwhl, h propo vlocy uprpoon ung prmrc nrpolon n Scon cn ovrlp wo vlocy profl brfly. In orr o compr h prformnc of h propo vlocy uprpoon wh Km lgorhm n h ronl PTP moon (no blnng), h cul mplmnon of 3 lgorhm r prform by ung h 3-x SCARA robo hown n Fg. 7. A hown n Fg. 8, h LbVIEW moon vc wh grphcl progrmmng h bn u for h conrollr of h robo [5]. () (b) Fg. 9 Exprmn conon of 3 x-scara robo For h prformnc of 3 lgorhm nclung PTP, Km lgorhm n h propo vlocy uprpoon ung prmrc nrpolon, h vbron murmn ung h FFT (F Fourr Trnform) nlyzr of Zonc h bn crr ou hown n Fg. 0. Fg. 0 Vbron murmn of 3 x-scara robo Fg. 7 3-x SCARA robo Fg. 8 Grphcl Progrmmng of LbVIEW Exprmn conon r follow. followng. B on h Crn coorn pcf n Fg. 9-(), h r pon (-00, 00), whr h n pon (00, 00) wh v pon of (0, 440), hown n Fg. 9-(b). Th pfcor, cclfcor n clfcor r 0.5, rpcvly, for h mxmum (conn-p) vlocy of 50 r/ n h mxmum cclron/clron (500 r/ ). Th rul of vbron murmn for 3 lgorhm r llur n Fg., n 3, rpcvly. A xpc, h lp m of PTP lgorhm for movng h robo from h r poon o h n poon h long, 6, compr wh ohr lgorhm (bou 3 ). Th roo-mn-qur (rm) vlu of vbron cclron n h un of grvonl cclron (g) r l Tbl. I cn b noc h h propo vlocy uprpoon ung prmrc nrpolon cn ruc h vbron cclron by / of h vbron cclron for PTP, by / of h vbron cclron for Km lgorhm. Thrfor cn b conclu h h propo vlocy uprpoon (pcfclly on-on blnng) lgorhm ung prmrc nrpolon cn b ffcv n rulng low vbron wh f movmn, compr o h xng lgorhm of PTP n Km lgorhm. 6 Fg. Rul of vbron murmn for PTP

5. CONCLUSION Fg. Rul of vbron murmn for Km lgorhm Fg. 3 Rul of vbron murmn for h propo vlocy uprpoon Tbl Vbron cclron of 3 lgorhm Algorhm g [rm] n g [rm] Tm x-coor. n y-coor, () PTP 0.585 0.7558 6.3 Km Algorhm 0.005 0.007 3. Propo Algorhm 0.003 0.0064 3.0 A l, h fnl xprmn of hybr moon (pcfclly on-lnr) blnng lgorhm gvn by quon (3) h bn prform o how ffcvn by mng h pn ch o h robo rw h ph of n-ffcor hown n Fg. 4. Th cn vrfy h h propo hybr moon blnng wor ffcnly for fbl mplmnon. V pon 3 Lnr nrpolon 3 Jon nrpolon Fg.4 Ph of Hybr Moon Blnng In gnrl, h movmn rgy of nurl robo cn b v no wo n,.., PTP n CP. In orr o mplmn CP moon on robo, ncry o bln on on moon o nohr on moon nr v pon n rpzol form of on vlocy. Fr, h vlocy uprpoon ung prmrc nrpolon h bn propo. Hybr moon blnng fn h blnng of ffrn wo yp moon uch blnng of on moon wh lnr moon, n h nghborhoo of v pon. Scon, hybr moon blnng lgorhm h bn propo b on h vlocy uprpoon ung prmrc nrpolon. By ung 3-x SCARA robo wh LbVIEW conrollr, h vlocy uprpoon lgorhm ung prmrc nrpolon h bn hown o rul n l vbron, compr wh PTP moon n Km lgorhm. Morovr, h hybr moon lgorhm h bn uccfully mplmn on h robo ung LbVIEW progrmmng, whch h bn confrm by howng h n-ffcor ph of on-lnr hybr moon. 6. ACKNOWLEDGMENT Th rrch w fnnclly uppor by h Mnry of Commrc, Inury n Enrgy (MOCIE) n Kor Inurl Tchnology Founon (KOTEF) hrough h Humn Rourc Trnng Proc for Rgonl Innovon 7. REFERENCES [] Nonl Inrumn Corporon. Moon conrol Funmnl cour Mnul, 00-004. [] D. Y. Km, Dvlopmn of nw wvng Algorhm ung Bzr Spln n A uy on h Rlzon of CP(Connuou Ph) Moon wh Jr Connuy, Mr of Engnrng r, School of Mchronc, Chngwon Nonl Unvry, 004. [3] K. S. Fu, R.C. Gonzlz n C.S.G L,, ROBOTICS, pp49-00 [4] J. H. Ju. Mon-Crlo Smulon Tchnqu for Erro r Anly of 3-x SCARA Robo ung Obrvbly, MSV07.pp0-07 [5] J. H. Km. Prooypng n Vulzon Tchnqu of 3-x SCARA Robo Ung DOE n LbVIEW, MSV07.pp34-40 [6] Nonl Inrumn, LbVIEW Funmnl, 005