Commentationes Mathematicae Universitatis Carolinae

Similar documents
Derivations and Reverse Derivations. in Semiprime Rings

A NOTE ON JORDAN DERIVATIONS IN SEMIPRIME RINGS WITH INVOLUTION 1

Relations of Centralizers on Semiprime Semirings

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Carolinae. Mathematica et Physica

Mathematica Bohemica

On R-Strong Jordan Ideals

On generalized -derivations in -rings

ON (m, n) JORDAN CENTRALIZERS IN RINGS AND ALGEBRAS. Joso Vukman University of Maribor, Slovenia

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Carolinae. Mathematica et Physica

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Mathematica Bohemica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

BERNARD RUSSO University of California, Irvine. Report on joint work with. Antonio M. Peralta Universidad de Granada, Spain

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

JORDAN *-DERIVATIONS ON PRIME AND SEMIPRIME *-RINGS د.عبد الرحمن حميد مجيد وعلي عبد عبيد الطائي كلية العلوم جامعة بغداد العراق.

Since Brešar and Vukman initiated the study of left derivations in noncom-

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Some theorems of commutativity on semiprime rings with mappings

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Acta Universitatis Carolinae. Mathematica et Physica

REFLEXIVITY OF THE SPACE OF MODULE HOMOMORPHISMS

Czechoslovak Mathematical Journal

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

On (θ, θ)-derivations in Semiprime Rings

Linear Differential Transformations of the Second Order

Commutativity theorems for rings with differential identities on Jordan ideals

Mathematica Slovaca. Dragan Marušič; Tomaž Pisanski The remarkable generalized Petersen graph G(8, 3) Terms of use:

Acta Universitatis Carolinae. Mathematica et Physica

Jordan α-centralizers in rings and some applications

CONTINUITY OF DERIVATIONS ON //»-ALGEBRAS

Research Article A Note on Jordan Triple Higher -Derivations on Semiprime Rings

Applications of Mathematics

Jordan Γ * -Derivation on Semiprime Γ-Ring M with Involution

Polynomials of small degree evaluated on matrices

Acta Mathematica Universitatis Ostraviensis

Mathematica Bohemica

Commentationes Mathematicae Universitatis Carolinae

AUTOMATIC CONTINUITY FOR BANACH ALGEBRAS WITH FINITE-DIMENSIONAL RADICAL

Math-Net.Ru All Russian mathematical portal

IDEAL AMENABILITY OF MODULE EXTENSIONS OF BANACH ALGEBRAS. M. Eshaghi Gordji, F. Habibian, and B. Hayati

NIL DERIVATIONS AND CHAIN CONDITIONS IN PRIME RINGS

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Computing the Norm A,1 is NP-Hard

Czechoslovak Mathematical Journal

Archivum Mathematicum

Pacific Journal of Mathematics

Commentationes Mathematicae Universitatis Carolinae

2. MAIN RESULTS. derivation,

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Nadeem Ur Rehman. 1. Introduction

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Multiplication of Polynomials

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Lie Ideals and Generalized Derivations. in -Prime Rings - II

ON GENERALIZED DERIVATION IN RINGS AND BANACH ALGEBRAS

arxiv: v1 [math.fa] 6 Nov 2015

Czechoslovak Mathematical Journal

Archivum Mathematicum

CHARACTERIZATION OF LOCAL RINGS

Časopis pro pěstování matematiky

A note on restricted Lie supertriple systems

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

ON T-FUZZY GROUPS. Inheung Chon

ON BP -ALGEBRAS. Sun Shin Ahn, Jeong Soon Han

Orthogonal Derivations on Semirings

Časopis pro pěstování matematiky

Prime Gamma Rings with Centralizing and Commuting Generalized Derivations

On Quasi Quadratic Functionals and Existence of Related Sesquilinear Functionals

BOOLEAN VALUED ANALYSIS APPROACH TO THE TRACE PROBLEM OF AW*-ALGEBRAS

A Generalization of Boolean Rings

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES ON LEFT BIDERIVATIONS IN SEMIPRIME SEMIRING U. Revathy *1, R. Murugesan 2 & S.

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

INSTITUTE of MATHEMATICS. ACADEMY of SCIENCES of the CZECH REPUBLIC. Transfinite ranges and the local spectrum. Muneo Chō Robin Harte Vladimír Müller

arxiv: v1 [math.fa] 24 Oct 2018

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Conservation laws for the geodesic equations of the canonical connection on Lie groups in dimensions two and three

Acta Mathematica et Informatica Universitatis Ostraviensis

CONTINUITY OF JORDAN HOMOMORPHISMS OF BANACH ALGEBRAS DUMITRU D. DRĂGHIA

Ehrhart polynomial for lattice squares, cubes, and hypercubes

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Mathematica Bohemica

ON 3-PRIME NEAR-RINGS WITH GENERALIZED DERIVATIONS

On Generalized Derivations. of Semiprime Rings

On complete permutation polynomials 1

On pseudomonotone variational inequalities

Časopis pro pěstování matematiky

Semigroup, monoid and group models of groupoid identities. 1. Introduction

Transcription:

Commentationes Mathematicae Universitatis Carolinae Borut Zalar On centralizers of semiprime rings Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 4, 609--614 Persistent URL: http://dml.cz/dmlcz/118440 Terms of use: Charles University in Prague, Faculty of Mathematics and Physics, 1991 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Comment.Math.Univ.Carolin. 32,4(1991)609 614 609 On centralizers of semiprime rings Borut Zalar Abstract. Let K be a semiprime ring and T : K K an additive mapping such that T(x 2 )=T(x)xholdsforall x K.Then Tisaleftcentralizerof K.Itisalsoprovedthat Jordan centralizers and centralizers of K coincide. Keywords: semiprime ring, left centralizer, centralizer, Jordan centralizer Classification: 16N60, 16W10, 16W25 Throughout this paper, K will represent an associative ring with the center Z. Kiscalledprimeif akb=(0)implies a=0or b=0andsemiprimeif aka=(0) implies a=0.amapping D:K Kiscalledderivationif D(xy)=D(x)y+xD(y) holdsforall x, y K. Aleft(right)centralizerof Kisanadditivemapping T : K Kwhichsatisfies T(xy)=T(x)y(T(xy)=xT(y))forall x, y K. If a K, then L a (x)=axisaleftcentralizerand R a (x)=xaisarightcentralizer. If Kisaringwithinvolution,theneveryadditivemapping E: K Kwhich satisfies E(x 2 )=E(x)x +xe(x)forall x KiscalledJordan -derivation.these mappings are closely connected with a question of representability of quadratic forms by bilinear forms. Some algebraic properties of Jordan -derivations are considered in[1], where further references can be found. For quadratic forms see[6]. In[2] M. Brešar and the author obtained a representation of Jordan -derivations in terms of left and right centralizerson the algebra of compact operators on ahilbertspace. Wearrivedataproblemwhetheranadditivemapping T which satisfiesaweakercondition T(x 2 )=T(x)xisautomaticallyaleftcentralizer. We provedin[2]thatthisisinfactsoif Kisaprimering(generallywithoutinvolution). In the present paper, we generalize this result on semiprime rings. Our second result is motivated by the study of Jordan mappings in associative rings. Ifweintroduceanewproductin Kgivenby x y=xy+ yx,thenjordan derivationisanadditivemapping Dwhichsatisfies D(x y)=d(x) y+ x D(y) forall x, y KandJordanhomomorphismisanadditivemapping Awhichsatisfies A(x y)=a(x) A(y)forall x, y K.ThereforewecandefineaJordancentralizer tobeanadditivemapping Twhichsatisfies T(x y)= T(x) y=x T(y).Sincethe product is commutative, there is no difference between the left and right Jordan centralizers. Acentralizerof Kisanadditivemappingwhichisbothleftandrightcentralizer. An easy computation shows that every centralizer is also a Jordan centralizer. We prove as our second result that every Jordan centralizer of a semiprime ring is a centralizer. ThisresearchwaspartiallysupportedbytheResearchCouncilofSlovenija.

610 B. Zalar 1. The first result. Toproveourfirstresult,weneedthreesimplelemmaswhichwenowstate. Lemma1.1. Let Kbeasemiprimering.If a, b Karesuchthat axb=0forall x K,then ab=ba=0. Proof:Takeany x K. (ab)x(ab)=a(bxa)b=0, (ba)x(ba)=b(axb)b=0. Bythesemiprimenessof K,itfollows ab=ba=0. Lemma 1.2. Let Kbeasemiprimeringand A:K K Kbiadditivemappings. If A(x, y)wb(x, y)=0forall x, y, w K,then A(x, y)wb(u, v)=0forall x, y, u, v, w K. Proof:Firstweshallreplace xwith x+u. Weusedthebiadditivityof Aand B. A(x+u, y)wb(x+u, y)=0, A(x, y)wb(u, y)= A(u, y)wb(x, y). (A(x, y)wb(u, y))z(a(x, y)wb(u, y)) = = A(u, y)wb(u, y)za(x, y)wb(x, y)=0. Hence A(x, y)wb(u, y)=0bysemiprimenessof K.Nowwereplace yby y+ vand obtain the assertion of the lemma with a similar approach as above. Lemma1.3. Let Kbeasemiprimeringand a Ksomefixedelement. If a[x, y] =0forall x, y K,thenthereexistsanideal Uof Ksuchthat a U Zholds. Proof: [z, a]x[z, a]=zax[z, a] azx[z, a]= = za[z, xa] za[z, x]a a[z, zxa]+a[z, zx]a=0. Hence a Z. Since zaw[x, y]=0forall z, w, x, y Kwecanrepeattheabove argumentwith zawinsteadof atoobtain KaK Zandnowitisobviousthatthe ideal generated by a is central. Proposition1.4. Let Kbeasemiprimeringofcharacteristicnottwoand T : K Kanadditivemappingwhichsatisfies T(x 2 )=T(x)xforall x K. Then T is a left centralizer. Proof: (1) T(x 2 )=T(x)x.

On centralizers of semiprime rings 611 Ifwereplace xby x+y,weget (2) T(xy+ yx)=t(x)y+ T(y)x. Byreplacing ywith xy+ yxandusing(2),wearriveat (3) T(x(xy+ yx)+(xy+ yx)x)=t(x)xy+ T(x)yx+T(x)yx+T(y)x 2. Butthiscanalsobecalculatedinadifferentway. (4) T(x 2 y+ yx 2 )+2T(xyx)=T(x)xy+ T(y)x 2 +2T(xyx). Comparing(3) and(4) we obtain (5) T(xyx)=T(x)yx. Ifwelinearize(5),weget (6) T(xyz+ zyx)=t(x)yz+ T(z)yx. Nowweshallcompute j= T(xyzyx+ yxzxy)intwodifferentways.using(5)we have (7) j= T(x)yzyx+ T(y)xzxy. Using(6)wehave (8) j= T(xy)zyx+ T(yx)zxy. Comparing(7)and(8)andintroducingabiadditivemapping B(x, y)=t(xy) T(x)ywearriveat (9) B(x, y)zyx+b(y, x)zxy=0. Equality(2)canberewritteninthisnotationas B(x, y)= B(y, x). Usingthis fact and equality(9) we obtain (10) B(x, y)z[x, y]=0. UsingfirstLemma1.2andthenLemma1.1wehave (11) B(x, y)z[u, v]=0. Nowfixsome x, y Kandwrite Binsteadof B(x, y)tosimplifyfurtherwriting. UsingLemma1.3wegettheexistenceofanideal Usuchthat B U Zholds. Inparticular, bb, Bb Zforall b K.Thisgivesus x B 2 y= B 2 y x=yb 2 x=y B 2 x.

612 B. Zalar Thisgivesus4T(x B 2 y)=4t(y B 2 x).bothsidesofthisequalitywillbecomputed infewstepsusing(2)andtheaboveremarks. Since we obtain 2T(xB 2 y+ B 2 yx)=2t(yb 2 x+b 2 xy), 2T(x)B 2 y+2t(b 2 y)x=2t(y)b 2 x+2t(b 2 x)y, 2T(x)B 2 y+ T(B 2 y+ yb 2 )x=2t(y)b 2 x+t(b 2 x+xb 2 )y, 2T(x)B 2 y+t(b)byx+t(y)b 2 x=2t(y)b 2 x+t(b)bxy+ T(x)B 2 y, T(x)B 2 y+ T(B)Byx=T(y)B 2 x+t(b)bxy. Byx=By x=x By= xby= Bxy, (12) T(x)B 2 y=t(y)b 2 x. Ontheotherhand,wealsohave 4T(xyB 2 )=4T(xB yb), 2T(xyB 2 + B 2 xy)=2t(xbyb+ ybxb), 2T(xy)B 2 +2T(B)Bxy=2T(Bx)By+2T(By)Bx, 2T(xy)B 2 +2T(B)Bxy= T(xB+ Bx)By+ T(yB+ By)Bx, 2T(xy)B 2 +2T(B)Bxy=T(x)B 2 y+ T(B)Bxy+ T(y)B 2 x+t(b)bxy, 2T(xy)B 2 = T(x)yB 2 + T(y)xB 2. Using(12)wefinallyarriveat T(xy)B 2 = T(x)yB 2. Butthismeansthat B 3 =0 so that B 2 KB 2 = B 4 K=(0), BKB= B 2 K=(0), whichimplies B=0andtheproofiscomplete. It was proved in[5] that left centralizers of semisimple Banach algebras are automatically continuous. Corollary1.5. Let AbeasemisimpleBanachalgebraand T: A Aanadditive mappingsuchthat T(x 2 )=T(x)xholdsforall x A. Then T isacontinuous linear operator. Proof: Every semisimple Banach algebra is a semiprime ring. Linearity follows from (T(λx) λt(x))y= T(λx)y T(x)λy= T(λxy) T(xλy)=0. The concept of a left and right centralizer are symmetric, therefore it is obvious thateveryadditivemapping Twhichsatisfies T(x 2 )=xt(x)isarightcentralizer if K is semiprime ring of characteristic not two.

On centralizers of semiprime rings 613 2. The second result. Weagaindividetheproofinfewlemmas. Lemma2.1. Let Kbeasemiprimering, Daderivationof Kand a Ksome fixed element. (i) D(x)D(y)=0forall x, y Kimplies D=0. (ii) ax xa Zforall x Kimplies a Z. Proof:(i) D(x)yD(x) = D(x)D(yx) D(x)D(y)x = 0. (ii) Define D(x)=ax xa. Itiseasytoseethat Disaderivation. Since D(x) Z forall x K,wehave D(y)x=xD(y)andalso D(yz)x=xD(yz). Hence D(y)zx+yD(z)x=xD(y)z+ xyd(z), D(y)[z, x]=d(z)[x, y]. Nowtake z= a.obviously D(a)=0,soweobtain From(i)weget D=0andhence a Z. 0=D(y)[a, x]=d(y)d(x). Lemma2.2. Let Kbeasemiprimeringand a Ksomefixedelement.If T(x)= ax+xaisajordancentralizer,then a Z. Proof: gives us T(xy+ yx)=t(x)y+ yt(x) axy+ ayx+xya+yxa=(ax+xa)y+ y(ax+xa), ayx+xya xay yax=0=(ay ya)x x(ay ya). ThesecondpartofLemma2.1nowgivesus a Z. Lemma2.3. Let Kbeasemiprimering.TheneveryJordancentralizerof Kmaps Zinto Z. Proof:Takeany c Zanddenote a=t(c). 2T(cx)=T(cx+xc)=T(c)x+xT(c)=ax+xa. A straightforward verification shows that S(x) = 2T(cx) is also a Jordan centralizer. ByLemma2.2,wehave T(c) Z.

614 B. Zalar Lemma2.4. Let Kbeasemiprimeringand a, b Ktwofixedelements.If ax=xb forall x K,then a=b Z. Proof: xyb=axy= xbyimplies x[b, y]=0forall x, y K.Hence[b, y]x[b, y]=0 andbysemiprimenessof K,wehave b Z. Therefore ax=bxandthisclearly implies a=b. Proposition 2.5. Every Jordan centralizer of semiprime ring K of characteristic not two is a centralizer. Proof:Let TbeaJordancentralizer,i.e. Ifwereplace yby xy+ yx,weget T(xy+ yx)=t(x)y+ yt(x)=xt(y)+t(y)x. T(x)(xy+ yx)+(xy+ yx)t(x)=t(xy+ yx)x+xt(xy+ yx)= =(T(x)y+ yt(x))x+x(t(x)y+ yt(x)). Nowitfollowsthat[T(x), x]y= y[t(x), x]holdsforall x, y Kandso[T(x), x] Z. Thenextgoalistoshowthat[T(x), x]=0holds.takeany c Z. UsingLemma2.3weget 2T(cx)=T(cx+xc)=T(c)x+xT(c)=2T(x)c. T(cx)=T(x)c=T(c)x, [T(x), x]c=t(x)xc xt(x)c=t(c)x 2 xt(c)x=0. Since[T(x), x]itselfiscentralelement,ourgoalisachieved. 2T(x 2 )=T(xx+xx)=T(x)x+xT(x)=2T(x)x=2xT(x). Proposition 1.4 now concludes the proof. References [1] Brešar M., Vukman J., On some additive mapping in rings with involution, Aequationes Math. 38(1989), 178 185. [2] Brešar M., Zalar B., On the structure of Jordan -derivations, Colloquium Math., to appear. [3] Herstein I.N., Topics in ring theory, University of Chicago Press, 1969. [4], Theory of rings, University of Chicago Press, 1961. [5] Johnson B.E., Sinclair A.M., Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90(1968), 1067 1073. [6] ŠemrlP.,QuadraticfunctionalsandJordan -derivations,studiamath.97(1991),157 165. Institute of Mathematics, University of Ljubljana, Jadranska 21, 61000 Ljubljana, Slovenija (Received May 21, 1991)