UNIVERSITI PUTRA MALAYSIA THE EFFECT OF CD AND NB ON BI-1212 SYSTEM

Similar documents
MUSTAFA MUSA ALI DIHOM

UNIVERSITI PUTRA MALAYSIA

ANOLYTE SOLUTION GENERATED FROM ELECTROCHEMICAL ACTIVATION PROCESS FOR THE TREATMENT OF PHENOL

ADSORPTION OF ACID FUCHSIN AND FAST GREEN ON ACTIVATED CARBONS

UNIVERSITI PUTRA MALAYSIA DIELECTRIC PROPERTIES OF STRONTIUM TITANATE AND CALCIUM TITANATE PREPARED VIA SOLID STATE AND MECHANICAL ALLOYING METHODS

UNIVERSITI PUTRA MALAYSIA GENERATING MUTUALLY UNBIASED BASES AND DISCRETE WIGNER FUNCTION FOR THREE-QUBIT SYSTEM

UNIVERSITI PUTRA MALAYSIA. EFFECT OF MAGNETIC NANOPARTICLE ADDITION ON THE SUPERCONDUCTING PROPERTIES OF Bi-Pb-Sr-Ca-Cu-O

INDIRECT TENSION TEST OF HOT MIX ASPHALT AS RELATED TO TEMPERATURE CHANGES AND BINDER TYPES AKRIMA BINTI ABU BAKAR

DETECTION OF STRUCTURAL DEFORMATION FROM 3D POINT CLOUDS JONATHAN NYOKA CHIVATSI UNIVERSITI TEKNOLOGI MALAYSIA

NUMERICAL INVESTIGATION OF TURBULENT NANOFLUID FLOW EFFECT ON ENHANCING HEAT TRANSFER IN STRAIGHT CHANNELS DHAFIR GIYATH JEHAD

REMOVAL OF LEAD (II) BY NITRIC ACID-MODIFIED ACTIVATED CARBON

UNIVERSITI PUTRA MALAYSIA STABILITY OF MARANGONI CONVECTION IN A FLUID LAYER WITH TEMPERATURE-DEPENDENT VISCOSITY NURUL HAFIZAH BINTI ZAINAL ABIDIN

UNIVERSITI TEKNOLOGI MARA. THE EFFECT OF Pr SUBSTITUTION AT Sr SITES IN 110K PHASE OF (Bi-Pb)-Sr-Ca-Cu-O SUPERCONDUCTING CERAMICS NAZARIN BIN NORDIN

UNIVERSITI PUTRA MALAYSIA

HYDROTHERMAL SYNTHESIS OF VANADIUM PHOSPHORUS OXIDE CATALYSTS FOR SELECTIVE OXIDATION OF n-butane TO MALEIC ANHYDRIDE

THE EFFECT OF THIN-LAYER ELEMENTS IN STRUCTURAL MODELING OF RAIL-TRACK SUPPORTING SYSTEM

EFFECTS OF Ni 3 Ti (DO 24 ) PRECIPITATES AND COMPOSITION ON Ni-BASED SUPERALLOYS USING MOLECULAR DYNAMICS METHOD

UNIVERSITI PUTRA MALAYSIA REMOVAL OF METHYL ORANGE AND METHYLENE BLUE FROM AQUEOUS SOLUTION USING DRAGON FRUIT FOLIAGE

AUTOMATED MEASUREMENT OF LEVITATION FORCE USING LABVIEW PROGRAMMING LANGUAGE

DIELECTRIC PROPERTIES OF CERAMICS, CaCu 3 Ti 4 O 12, SUBSTITUTED WITH Sr OR Ba

MODELING AND CONTROL OF A CLASS OF AERIAL ROBOTIC SYSTEMS TAN ENG TECK UNIVERSITI TEKNOLOGY MALAYSIA

ADSORPTION OF ARSENATE BY HEXADECYLPYRIDINIUM BROMIDE MODIFIED NATURAL ZEOLITE MOHD AMMARUL AFFIQ BIN MD BUANG UNIVERSITI TEKNOLOGI MALAYSIA

EVALUATION OF FUSION SCORE FOR FACE VERIFICATION SYSTEM REZA ARFA

OPTICAL TWEEZER INDUCED BY MICRORING RESONATOR MUHAMMAD SAFWAN BIN ABD AZIZ

A COMPUTATIONAL FLUID DYNAMIC FRAMEWORK FOR MODELING AND SIMULATION OF PROTON EXCHANGE MEMBRANE FUEL CELL HAMID KAZEMI ESFEH

SHAPE-BASED TWO DIMENSIONAL DESCRIPTOR FOR SEARCHING MOLECULAR DATABASE

DEVELOPMENT OF A COMPUTER INTERFACING TECHNIQUE FOR THE STUDY OF MAGNETIC FORCES OF SUPERCONDUCTOR AND PERMANENT MAGNET

COVRE OPTIMIZATION FOR IMAGE STEGANOGRAPHY BY USING IMAGE FEATURES ZAID NIDHAL KHUDHAIR

t,' ij HAK r.jiilik QD478.N82015 desdestabilizing agent for solid state hydrogen storage / Nurul Shafikah Mohd Mustafa.

UNIVERSITI PUTRA MALAYSIA ACCELERATING COSMOLOGIES WITH EXTENDED PRODUCT SPACES CH NG HAN SIONG ITMA

SYNTHESIS AND CATALYTIC PERFORMANCE OF PALLADIUM(II) HYDRAZONE COMPLEXES IN SUZUKI-MIYAURA CROSS-COUPLING REACTION

MONTE CARLO SIMULATION OF NEUTRON RADIOGRAPHY 2 (NUR-2) SYSTEM AT TRIGA MARK II RESEARCH REACTOR OF MALAYSIAN NUCLEAR AGENCY

SYNTHESIS AND CHARACTERIZATION OF MESO-SUBSTITUTED PORPHYRIN MUHAMMAD TAHIR MUHAMMAD

SYNTHESIS, CHARACTERIZATION AND CATALYTIC APPLICATION OF

SEDIMENTATION RATE AT SETIU LAGOON USING NATURAL. RADIOTRACER 210 Pb TECHNIQUE

OPTICAL AND THERMAL PROPERTIES OF NEODYMIUM DOPED TELLURITE NANOSTRUCTURED GLASS NUR AMANINA BINTI HJ MAT JAN

UNIVERSITI PUTRA MALAYSIA DEVELOPMENT OF SOFTWARE FOR DIELECTRIC ANALYSIS LIM LONG HSIANG FSAS

UNIVERSITI PUTRA MALAYSIA EXTENDING BIANCHI S CLASSIFICATION OF HOMOGENEOUS THREE-MANIFOLDS ASLAM ABDULLAH ITMA

MODELING AND SIMULATION OF BILAYER GRAPHENE NANORIBBON FIELD EFFECT TRANSISTOR SEYED MAHDI MOUSAVI UNIVERSITI TEKNOLOGI MALAYSIA

BOUNDARY INTEGRAL EQUATION WITH THE GENERALIZED NEUMANN KERNEL FOR COMPUTING GREEN S FUNCTION FOR MULTIPLY CONNECTED REGIONS

SORPTION OF CHROMIUM(VI) AND COPPER(II) FROM AQUEOUS SOLUTION BY CHEMICALLY-MODIFIED RICE HULL

SYNTHESIS AND CHARACTERIZATION OF POLYACRYLAMIDE BASED HYDROGEL CONTAINING MAGNESIUM OXIDE NANOPARTICLES FOR ANTIBACTERIAL APPLICATIONS

UNIVERSITI PUTRA MALAYSIA COSMIC CRYSTALLOGRAPHY: CCP-INDEX OF THURSTON MANIFOLD TOH SING POH FSAS

A STUDY ON THE APPLICABILITY OF SYMBOLIC COMPUTATION IN STABILISING CONTROL DESIGN FOR SWITCHED SYSTEMS AT-TASNEEM BINTI MOHD AMIN

UNIVERSITI PUTRA MALAYSIA EFFECT OF PRESSURE AND THICKNESS ON THE ELASTIC AND DIELECTRIC PROPERTIES OF CHITOSAN

ADSORPTION AND STRIPPING OF ETHANOL FROM AQUEOUS SOLUTION USING SEPABEADS207 ADSORBENT

UNIVERSITI PUTRA MALAYSIA CONVECTION BOUNDARY LAYER FLOWS OVER NEEDLES AND CYLINDERS IN VISCOUS FLUIDS SYAKILA BINTI AHMAD IPM

UNIVERSITI PUTRA MALAYSIA DESIGN OF ROBUST PARTICLE SWARM OPTIMIZATION - TUNED FUZZY CONTROLLER FOR A SINGLE AXIS SMALL MAGNETIC LEVITATION SYSTEM

PRODUCTION OF POLYHYDROXYALKANATE (PHA) FROM WASTE COOKING OIL USING PSEUDOMONAS OLEOVORANS FARZANEH SABBAGH MOJAVERYAZDI

PREPARATION AND PROPERTIES OF REDUCED GRAPHENE OXIDE FOR DIRECT METHANOL FUEL CELL APPLICATION

UNIVERSITI PUTRA MALAYSIA. SYNTHESIS AND PHOTOCATALYTIC ACTIVITY OF BiVO4, Ag-BiVO4 AND Cu-BiVO4 IN DEGRADATION OF METHYLENE BLUE

UNIVERSITI PUTRA MALAYSIA VARIABLE STEP VARIABLE ORDER BLOCK BACKWARD DIFFERENTIATION FORMULAE FOR SOLVING STIFF ORDINARY DIFFERENTIAL EQUATIONS

FRAGMENT REWEIGHTING IN LIGAND-BASED VIRTUAL SCREENING ALI AHMED ALFAKIABDALLA ABDELRAHIM

NUMERICAL SIMULATIONS ON THE EFFECTS OF USING VENTILATION FAN ON CONDITIONS OF AIR INSIDE A CAR PASSENGER COMPARTMENT INTAN SABARIAH BINTI SABRI

INFLUENCES OF GROUNDWATER, RAINFALL, AND TIDES ON BEACH PROFILES CHANGES AT DESARU BEACH FARIZUL NIZAM BIN ABDULLAH

UNIVERSITI PUTRA MALAYSIA ANALYTICAL APPROACH FOR LINEAR PROGRAMMING USING BARRIER AND PENALTY FUNCTION METHODS PARWADI MOENGIN FSAS

UNIVERSITI PUTRA MALAYSIA NECESSARY AND SUFFICIENT CONDITION FOR EXTENTION OF CONVOLUTION SEMIGROUP MAI ZURWATUL AHLAM BINTI MOHD JAFFAR FS

CHARACTERISTICS OF SOLITARY WAVE IN FIBER BRAGG GRATING MARDIANA SHAHADATUL AINI BINTI ZAINUDIN UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF A CUT-SLOPE STABILITY ASSESSMENT SYSTEM FOR PENINSULAR MALAYSIA SUHAIMI BIN JAMALUDIN

HIGH RESOLUTION DIGITAL ELEVATION MODEL GENERATION BY SEMI GLOBAL MATCHING APPROACH SITI MUNIRAH BINTI SHAFFIE

UNIVERSITI PUTRA MALAYSIA EFFECT OF NON-UNIFORM TEMPERATURE GRADIENT AND MAGNETIC FIELD ON MARANGONI AND BENARD-MARANGONI CONVECTION

EFFECT OF GRAPHENE OXIDE (GO) IN IMPROVING THE PERFORMANCE OF HIGH VOLTAGE INSULATOR NUR FARAH AIN BINTI ISA UNIVERSITI TEKNOLOGI MALAYSIA

MORPHOLOGICAL, GENETIC AND BIOLOGICAL STUDIES OF RED PALM WEEVIL, Rhynchophorus spp. (COLEOPTERA: CURCULIONIDAE) IN TERENGGANU, MALAYSIA

DEVELOPMENT AND CHARACTERIZATION OF MULTI-WAVELENGTH FIBER LASER LIGHT SOURCES BASED ON ERBIUM AND BRILLOUIN GAIN. By SUHAIRI SAHARUDIN

SPECTROSCOPIC PROPERTIES OF Nd:YAG LASER PUMPED BY FLASHLAMP AT VARIOUS TEMPERATURES AND INPUT ENERGIES SEYED EBRAHIM POURMAND

CaCu 2. O 8-δ. Superconductor (Sifat Elektrik dan Kerentanan AU Superkonduktor Tl 2

ARTIFICIAL NEURAL NETWORK AND KALMAN FILTER APPROACHES BASED ON ARIMA FOR DAILY WIND SPEED FORECASTING OSAMAH BASHEER SHUKUR

PREPARATION AND CHARACTERIZATION OF MICROWAVE-MODIFIED ADSORBENTS FROM Casuarina equisetifolia SEEDS FOR DYE ADSORPTION APPLICATION

MECHANICAL PROPERTIES OF CALCIUM CARBONATE AND COCONUT SHELL FILLED POLYPROPYLENE COMPOSITES MEHDI HEIDARI UNIVERSITI TEKNOLOGI MALAYSIA

OPTIMIZATION OF CHROMIUM, NICKEL AND VANADIUM ANALYSIS IN CRUDE OIL USING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY NURUL HANIS KAMARUDIN

SYNTHESIS AND PHYSICOCHEMICAL CHARACTERIZATION OF PAMOATE-INTERCALATED ZINC-ALUMINIUM LAYERED DOUBLE HYDROXIDE HYBRID NANOCOMPOSITE

UNIVERSITI PUTRA MALAYSIA ELASTIC, ELECTRICAL AND THERMAL PROPERTIES OF TELLURITE GLASS SYSTEMS HALIMAH BT MOHAMED KAMARI FS

INVESTIGATION ON MORPHOLOGY AND STRUCTURAL PROPERTIES OF 2D CARBON NANOSTRUCTURE GROWN VIA 150 MHz PECVD

UNIVERSITI PUTRA MALAYSIA

ONLINE LOCATION DETERMINATION OF SWITCHED CAPACITOR BANK IN DISTRIBUTION SYSTEM AHMED JAMAL NOORI AL-ANI

UNIVERSITI PUTRA MALAYSIA STABILIZATION OF PEAT SOIL USING ELECTROCHEMICAL INJECTION TECHNIQUE HOSSEIN MOAYEDI

ORGANOCHLORINE PESTICIDES (OCPS) IN SEDIMENTS OF NORTHEAST COAST OF BORNEO SABAH AND SULU SULAWESI SEA, MALAYSIA NOORKHALISAH BT KHAMARUDIN

COMPUTATIONAL MODELLING AND SIMULATION OF BIOMAGNETIC FLUID FLOW IN A STENOTIC AND ANEURYSMAL ARTERY NURSALASAWATI BINTI RUSLI

UNIVERSITI PUTRA MALAYSIA OPTIMISATION OF EXTRACTION METHODS AND RHEOLOGICAL CHARACTERISTICS OF SOURSOP JUICE

UNIVERSITI PUTRA MALAYSIA

UNIVERSITI PUTRA MALAYSIA

GAS PHAS E GLYCEROL DEHYDRATION TO ACROLEIN OVER SUPPORTED SILICOT UNGSTIC ACID CATALYST AMIN TALEBIAN KIAKALAIEH

UNSTEADY MAGNETOHYDRODYNAMICS FLOW OF A MICROPOLAR FLUID WITH HEAT AND MASS TRANSFER AURANGZAIB MANGI UNIVERSITI TEKNOLOGI MALAYSIA

A STUDY ON THE CHARACTERISTICS OF RAINFALL DATA AND ITS PARAMETER ESTIMATES JAYANTI A/P ARUMUGAM UNIVERSITI TEKNOLOGI MALAYSIA

MATERIAL SELECTION IN MECHANICAL DESIGN OF CAR BUMPER NURUL AZWAN BIN ADNAN BACHELOR OF ENGINEERING UNIVERSITI MALAYSIA PAHANG

DEVELOPMENT OF GEODETIC DEFORMATION ANALYSIS SOFTWARE BASED ON ITERATIVE WEIGHTED SIMILARITY TRANSFORMATION TECHNIQUE ABDALLATEF A. M.

Abstract. Glow discharges are used in a large number of applications, and it is one of the most

EMPIRICAL STRENQTH ENVELOPE FOR SHALE NUR 'AIN BINTI MAT YUSOF

WIND TUNNEL TEST TO INVESTIGATE TRANSITION TO TURBULENCE ON WIND TURBINE AIRFOIL MAHDI HOZHABRI NAMIN UNIVERSITI TEKNOLOGI MALAYSIA

CHARACTERIZATION OF IRRADIATION MODIFICATION OF ETHYLENE VINYL ACETATE/ EPOXIDIZED NATURAL RUBBER/ HALLOYSITE NANOTUBES NANOCOMPOSITES

UNIVERSITI PUTRA MALAYSIA. PREPARATION AND EVALUATION OF Ni/CeO2-SiO2 CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE IN SYNGAS PRODUCTION

MATHEMATICAL MODELLING OF UNSTEADY BIOMAGNETIC FLUID FLOW AND HEAT TRANSFER WITH GRAVITATIONAL ACCELERATION

ABSTRAK. Awaluddin Thayab: Hubungan sifat mekanik dengan morfologi komposit terisi termoplastik..., USU e-repository 2008

UNIVERSITI PUTRA MALAYSIA. STRUCTURAL ANALYSIS AND ELECTRICAL CHARACTERISATIONS OF Sr(1-x)CaxTiO3 AND Sr(1-x)BaxTiO3 CERAMICS AZIZAH BINTI ISHAK

STABILITY OF TRIAXIAL WEAVE FABRIC COMPOSITES EMPLOYING FINITE ELEMENT MODEL WITH HOMOGENIZED CONSTITUTIVE RELATION NORHIDAYAH RASIN

COMMUTATIVITY DEGREES AND RELATED INVARIANTS OF SOME FINITE NILPOTENT GROUPS FADILA NORMAHIA BINTI ABD MANAF UNIVERSITI TEKNOLOGI MALAYSIA

ELIMINATION OF RAINDROPS EFFECTS IN INFRARED SENSITIVE CAMERA AHMAD SHARMI BIN ABDULLAH

THE DEVELOPMENT OF PORTABLE SENSOR TO DETERMINE THE FRESHNESS AND QUALITY OF FRUITS USING CAPACITIVE TECHNIQUE LAI KAI LING

UNIVERSITI PUTRA MALAYSIA COPYRIGHT UPM PREPARATION AND CHARACTERIZATION OF HIGH- DENSITY POLYETHYLENE/POLYSTYRENE/CLAY NANOCOMPOSITES SUSSAN AZIZY

SYNTHESIS AND CHARACTERIZATION OF SUPRAMOLECULAR POLYMER BASED ON LINOLEIC ACID OF SUNFLOWER OIL MILI PURBAYA UNIVERSITI TEKNOLOGI MALAYSIA

Transcription:

UNIVERSITI PUTRA MALAYSIA THE EFFECT OF CD AND NB ON BI-1212 SYSTEM AZMAN AWANG TEH. FSAS 2004 11

THE EFFECT OF Cd AND Nb ON Bi-1212 SYSTEM BY AZMAN AWANG TEH Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science June 2004

SPECIALLY DEDICATED TO MY WIFE AND FAMILY

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science THE EFFECT OF Cd AND Nb ON Bi-1212 SYSTEM BY AZMAN AWANG TEH June 2004 Chairman: Professor Abdul Halim Shaari, Ph.D. Faculty: Science and Environmental Studies The 1212 phase of Bi-based superconductor by theory has good properties in terms of structure and transition temperature, as it is an adaptation of the Y123 system and the Bi22 12 system. The new Bi1212 system with stoichiometries ( ~ ~ 0. 2 ~ )sr2 ~ 0 (~0.3~~0.7. 6 ~ ~ )~~2.0506 and (B~~.~P~~,~~M,)s~~ ( ~ ~. ~ ~ a where ~. ~ M = ) Cd ~ and u Nb, ~. x = ~ 0, ~ 0.05, 0 0.1, ~ 0.15, 0.2,0.25 has been successfully synthesized and characterized by means of X-Ray (powder) diffraction, scanning electron microscope, AC susceptibility and resistivity measurements. For the composition of (B~~,~P~~,~M~)s~~(Y~, the above stated systematic examinations clarified the effect of Cd and Nb on Bi-1212 phase, both as a substitution (0 < x i 0.2) and as an addition (x = 0.25). All samples were prepared using solid-state reaction. These samples underwent sintering process at two different temperatures, which were 960 C and 980 C, for a time duration of 2 hours and 10 hours. Then all the samples underwent heat treatment in flowing argon at 750 C for 10

hours. All the samples were orthorhombic with the space group Pmmm except the compounds with composition ( ~ i ~ ~ ~ ( ~ ~ b ~ ~, ~ ~ a ~ ~ d and, ~,) ~ u ~ ~ ) ( ~ i ~ ~ ~ ( ~ ~ b ~ ~, ~, ~ ~ a ~ which. ~ ~ d were ) ~ sintered u ~ ~ ~. at ~ 960 C ~ ) 0 for ~ ~ 2 r, hours ~ were tetragonal with space group P4mmm. The X-ray diffraction pattern showed that all samples were in mixed phase (12 12 and 221 2) with 12 12 acting as a dominant phase. All as-prepared samples showed non-superconducting properties below 20 K, but after heat treatment in flowing argon, some of them showed superconducting properties with the highest transition temperature of Tc,ze,,=64 K and Tc,,,,et=80 K obtained from Nb-doping sample with x=0.2. The ac susceptibility studies showed that most of the superconducting material exhibited weak grain conductivity. The surface morphology of most of the samples observed from scanning electron microscope showed a layered-slab texture.

PERPUSTAKAAN SULTAN AB9UL SAMAD ', ' Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains KESAN-KESAN PENDOPAN ELEMEN KE ATAS SISTEM Bi-1212 Oleh AZMAN AWANG TEH Jun 2004 Pengerusi: Profesor Abdul Halim Shaari, Ph.D. Fakulti: Sains dan Pengajian Alam Sekitar Fasa 12 12 bagi superkonduktor berasakan Bi secara teorinya mempunyai sifat yang baik daripada segi suhu peralihan dan sifat pepejal sampel disebabkan oleh pengabungan antara dua asas iaitu sistem Y 123 dan sistem Bi2212. Sistem Bi1212 yang baru melibat komposisi ( ~ ~ 0. 2 ~ )sr2 ~ (~0.3~~0.7 0. 6 ~ ~ )~~2.0506 dan ( B ~ ~. ~ )sr2 P ~ ( Y ~. ~ ~. ~ c M ~ ~ ~. dengan ~ ) c M u ~ ialah. ~ Cd ~ dan ~ ~ Nb, dengan nilai x=o, 0.05, 0.1, 0.1 5, 0.2, 0.25. Semua sampel disediakan dengan menggunakan kaedah tindakbalas keadaan pepejal. Sampel-sampel ini disinter pada dua suhu berlainan iaitu 960 C dan 980 C untuk jangkamasa 2 jam dan 10 jam. Sifat angkutan sampel-sampel ini ditentukan dengan menggunakan kaedah penduga empat titik, sifat magnet menggunakan kerentanan au, mikrostruktur oleh Mikroskop Irnbasan Elektron (SEM) dan struktur serta fasa kimia oleh teknik pembelauan sinar-x (XRD). Bagi komposisi ( B ~ ~. ~ P )sr2 ~ ( ~ Y~.~C~~.~)CU. ~ M 2.05~6, pemeriksaan-pemeriksaan yang dinyatakan di atas akan dapat menerangkan kesan Cd dan Nb ke atas fasa Bi1212 sama

ada sebagai pendopan (0 < x 5 0.2) atau penambahan (x = 0.25). Terdapat sampel yang bukan superconductor dan sampel yang superkonduktor dengan suhu peralihan yang tertinggi diperolehi adalah Tc,sifar=64 K and Tc,,,1,=80 K daripada sampel pendopan dengan Nb bagi x=0.2. Struktur permukaan semua sampel yang diperolehi daripada ujian SEM menunjukkan permukaan yang berlapis-lapis. Daripada ujian XRD pula didapati struktur bagi semua sampel adalah ortorombik dengan kumpulan Pmmm kecuali sampel dengan komposisi (~i0.2~b0.6~d0.05 )sr2 (~0.3ca0.7 b2.osoe dan ( B ~ ~ ~ ~ P ~ ~ ~ ~ ~ yang c disinter ~ ~ pada ~ ~ suhu ~ 960 C ) s selama ~ ~ 2 ( Y ~ ~ jam adalah tetragonal dengan kumpulan P4mmm. Semua sampel menunjukkan terdapatnya campuran fasa (1212 dan 2212) yang didominasi oleh fasa 12 12. Kajian kerentanan au ke atas sampel-sampel menunjukkan pengaliran arus di antara butiran- butiran adalah lemah.

ACKNOWLEDGEMENTS First of all, I am very grateful to Allah Subhanahu Taala the most beneficent and merciful, for giving me full strength to complete this thesis. I express my deep sense of gratitude to my chairman Prof. Abdul Halim Shaari who has developed my scientific career. I thank him for his invaluable guidance throughout the project by his constant encouragement, constructive suggestions and a series of continuous discussions. I also express my gratitude to my co-supervisors Zainul Abidin Hassan and Associate Prof. Ahmad Kamal Hayati Yahya for their comments, suggestions and guidance throughout my research work. I am very much grateful for the financial assistance provided by the National Science Fellowships (NSF) and the Ministry of Science, Technology and Environment, Malaysia (MOSTE). My special thanks to Miss Nordina and all staff of MOSTE for their kind help throughout my project. My special thanks also go to Mr. Rafi, Miss Aini, Mr. Ho and Miss Azilah for their help in SEM examination, and Mr. Razak Harun for his technical help. I am thankful to my friends Kabashi, Dr. Imad, Dr. Lim, Abdul Samad, Ms Chin Chiu Jin and every one that have lent their help and support to me morally in completing the thesis. vii

I certify that an Examination Committee met on 4th June 2004 to conduct the final examination of Azman Awang Teh on his Master of Science thesis entitled "The Effect of Cd and Nb on Bi-1212 System" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 198 1. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows: Mahdi Abd. Wahab, Ph.D. Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman) Sidek Hj. Abdul Aziz, Ph.D. Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member) Zaidan Abd. Wahab, Ph.D. Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member) Roslan Ab. Shukor, Ph.D. Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (Independent Examiner) School of Graduate Studies Universiti Putra Malaysia Date: 2 6 AUG 2004

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows: Abdul Halim Shaari, Ph.D. Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman) Zainul Abidin Hassan, Ph.D. Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member) Ahmad Kamal Hayati Yahya, Ph.D. Associate Professor Faculty of Applied Sciences Universiti Teknologi Malaysia (Member) AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia Date: 10 SEP 2004

DECLARATION I hereby declare that this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions. AZMAN AWANG TEH Date: 23 August 2004

TABLE OF CONTENTS DEDICATION ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF PLATES LIST OF SYMBOLS AND ABBREVIATIONS Page.. 11... 111 v vii... Vlll X xiii xvii xxviii XXX CHAPTER INTRODUCTION THEORIES ABOUT SUPERCONDUCTORS Type I and Type I1 superconductors Flux pinning Meissner-Ochsenfeld effect BCS theory Bean's model Critical current density: AC determination LITERATURE REVIEW The effect of sintering timeltemperature The effect of annealing process METHODOLOGY Introduction Chemical stoichiometry of Bi-1212 Fabrication of (Bi,Pb,X)- 12 12 superconductor Mixing the Chemicals Calcination Sintering Standard characterization of (Bi,Pb)- 12 12 superconductors Resistance measurement AC susceptibility measurement X-ray Diffraction Microstructure analysis

RESULTS AND DISCUSSION X-ray diffraction analysis ( ~ ~ 0. 2 ~ )Sr2(ca~.3y~.7 ~ 0. 6 ~ )Cu2.05~6 ~ ~ ( ~ ~ 0. 4 ~ ~ )Sr2 0 (. ~~O.3~0.7 3 5 ~ ~ )Cu2.~506 ~ ( ~ ~ 0. 2 ~ )Sr2(ca0.3y0.7 ~ 0. 6 ~ )cu2.0506 ~ ( ~ ~ 0. 4 ~ ~ )Sr2 0 (. ~~0.3~0.7 3 5 ~ ~ )Cu2.05~6 Microstructure analysis ( ~ ~ 0. 2 ~ )Sr2 ~ ( 0 ~~0.3~0.7. 6 ~ )Cu2.05~6 ~ ~ (Bi~.4pb~.35cdx)Sr2(ca~.3y~.7)Cu2.05~6 ( ~ ~ 0. 2 ~ )Sr2 ~ ( 0 ~~0.3~0.7. 6 ~ ~ )Cu2.05~6 ( ~ ~ 0. 4 ~ ~ br2 0 (~~0.3~0.7. 3 5 ~ ~ )C~2.05~6 ~ Resistance measurement (Bi~.~pb~.6cdx )Sr2 ( ~~0.3~0.7 b2.0506 ( ~ ~ o. 4 ~ ~ )Sr2 0 (. ~~0.3~0.7 3 5 ~ ~ k~2.0506 ~ sam~les ( ~ ~ o. 2 ~ )Sr2 ~ ( 0 ~~O.3~0.7. 6 ~ k~2.0506 ~ ( ~ ~ 0. 4 ~ )Sr2 ~ ( o ~~0.3~0.7. i ~ )Cu2.05~6 ~ ~ AC Susceptibility studies (~io.z~bo.6cd~ )Sr2 (ca0.3~0.7)cu2.050a ( ~ ~ 0. 2 ~ )Sr2 ~ ( 0 ~~0.3~0.7. 6 ~ )Cu2.O5~6 ~ samples (~i0.4pb0.35% )Sr2 (cao.3~0.7 )~u2.0506 samples CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 237 Conclusions 237 ( ~ ~ 0. 2 ~ )Sr2(ca0.3~0.7 ~ 0. 6 ~ ~ )C"2.05~6 ~ 239 ( ~ ~ 0. 4 ~ ~ )Sr2 0.( ~~0.3~0.7 3 5 ~ ~ b2.0506 ~ samples 241 ( ~ ~ 0. 2 ~ )Sr2 ~ ( 0 ~~0.3~0.7. 6 ~ ~ )C"2.05~6 ~ 242 ( ~ ~ 0. 4 ~ ~ )Sr2 0 (. ~~0.3~0.7 3 5 ~ ~ b2.0506 ~ Samples 243 Suggestions For Future Work 245 REFERENCES APPENDICES BIODATA OF THE AUTHOR xii

LIST OF TABLES Table 1.1 Low-Temperature Superconductors [3]. 1.2 High-Temperature Superconducting Compounds [5]. Page 5 6 4.1 Temperaturehime schedule for sintering and annealing process of material from the system (~i, (Y, ~ a ) C u ~., ~ ~ 0 ~ Pb, M )s~~ 5.1.1 Lattice parameters and volume fraction of 12 12 phase of (~i~,~~b~&d, 81-2 ( c ~ ~.)CU~.~~O~ ~ Y ~. ~ samples sintered at 960'~ 5.1.2 Lattice parameters and volume fraction of 1212 phase of ( ~ i ~. ~ )Sr2(~a0,3~0.7)~~2.05~6 ~ b ~, ~ ~ d ~ samples sintered at 960'~ 5.1.3 Lattice parameters and volume fraction of 12 12 phase of (~io.2pb 0.6~d,)sr2 )CU 2.05~6 samples sintered at 980'~ 5.1.4 Lattice parameters and volume fraction of 1212 phase of ( ~ i ~, ~ ~ )sr2 b ~. ~ ~ d, 2,05~g samples sintered at 980'~ 5.1.5 Lattice parameters and volume fraction of 12 12 phase of (~i0.4pb o.3s~dx )Sr2( c ~ ~.)Cu ~ Y 2.05~s ~. ~ samples sintered at 960'~ 5.1.6 Lattice parameters and volume fraction of 212 phase of ( ~ i ~, ~ )Sr2 ~ ( b c ~ ~., ~ )CU ~ ~ Y 2.05~S ~. d ~ samples sintered at 960'~ 101 5.1.7 Lattice parameters and volume fraction of 12 12 phase of ( ~ i ~ 0.35cd. ~ ~ )Sr2 b ( c ~ ~. )Cu ~ Y 2.05~6 ~, ~ samples sintered at 980'~ 106 5.1.8 Lattice parameters and volume fraction of 1212 phase of ( ~ i ~. ~ )Sr2 ~ ( c b ~ ~ ~,.)CU~.~~O~ ~ Y ~ ~ ~. ~ samples d ~ sintered at 980'~ 109... Xlll

5.1.9 Lattice parameters and volume fraction of 1212 phase of ( ~ i ~ ~ ~ ~ b ~ )Cu2,05~g ~ ~ N samples b ~ ) sintered ~ r at ~ 960'~ ( ~ a ~ ~ ~ ~ ~ ~ 5.1.10 Lattice parameters and volume fraction of 12 12 phase of ( B ~ ~ ~ ~ P ~ ~ )CU~.~~O~ ~ ~ N samples ~ ~ ) sintered s ~ at 960'~ ~ ( c ~ ~ ~ ~ Y ~ 5.1.11 Lattice parameters and volume fraction of 12 12 phase o f ( ~ i ~ ~ ~ ~ b ~ ~ ~ N b samples ~ ) sintered ~ r ~ at ( 980'~ ~ a ~ ~ ~ ~ ~ ~ ~ ) 5.1.12 Lattice parameters and volume fraction of 12 12 phase of ( ~ i ~. ~ ~ )sr2 b ~ (. c ~ ~ N~ b.)cu ~ Y 2.05~g ~. ~ samples sintered at 980'~ 5.1.13 Lattice parameters and volume fraction of 12 12 phase of (Bi0,4Pb 0.35Nbx )sr2( c ~ ~.)Cu ~ Y 2.05~g ~. ~ samples sintered at 960'~ 5.1.14 Lattice parameters and volume fraction of 12 12 phase of )Sr2( c ~ ~.)Cu ~ Y 2.05~6 ~. ~ samples sintered at 960'~ 5.1.15 Lattice parameters and volume fraction of 1212 phase of ( ~ i ~. ~ ~ b )Sr2 ~.( ~ c ~ N~ b,)cu~,~~o~ ~, Y ~. samples ~ sintered at 980'~ 5.1.16 Lattice parameters and volume fraction of 12 12 phase of ( ~ i ~ NbX. ~ )Sr2 ~ ( b c ~ ~.. ~ ~ ~ Y ~. ~ samples sintered at 980'~ 5.3.1 Values of Tc,,.+ and Tc, on,,, of the superconducting samples )Sr 2 ( c ~ ~.)Cu2.05~6 ~ Y ~, of ~ different x composition, sintered at 960 C 5.3.2 Values of T,,,o and Tc,, of the superconducting samples )~r 2 ( c ~ ~, ~ Y ~. of ~ different x )cu~.~~o~ composition, sintered at 960 C Values of Tc, 4 and Tc,,, of the superconducting samples ( ~ i ~. ~ )Sr ~ 2 ( b c ~ ~.. ~ ~ ~ Y d ~. ~ of ~ different x )CU~.~~O~ composition, sintered at 980 C xiv

Values of Tc, o, and Tc, onset of the superconducting samples (~i~.~~b~&d, )Sr 2 ( c ~ ~. ~ Y ~. ~ of different x )CU~.~~O~ composition, sintered at 980 C Values of Tc, o, and Tc, onset of the superconducting samples ( ~ i ~. ~ )ST ~ 2(~a0.3~0.7 b ~. )CU~.~~O~ ~ ~ ~ of d different ~ x composition, sintered at 960 C Values of Tc, o, and Tc, on,et of the superconducting samples ( ~ i ~. ~ )Sr ~ 2(~a0.3~0.7 b ~. )CU~.~~O~ ~ ~ ~ of d different ~ x composition, sintered at 960 C Values of Tc, o, and Tc, onset of the superconducting samples ( ~ i ~. ~ )Sr ~ 2(~ao.3~o.7 b ~. ~ ~ ~ of d different ~ x ) C U ~. ~ ~ ~ ~ composition, sintered at 980 C Values of Tc, o, and Tc, on,et of the superconducting samples ( ~ i ~. ~ )Sr ~ 2(~a0,3~0.7 b ~. ~ ~ ~ of d different ~ x )CU~,~~O~ composition, sintered at 980 C Values of Tc, o, and Tc, onset of the superconducting samples (~i~.~~b~.~nb, )Sr 2 ( c ~ ~.)Cu2.05~g ~ Y ~. ~ of different x composition, sintered at 960 C 5.3.10 Values of Tc, o, and Tc, of the superconducting samples (~i~.~~b~.~nb, )Sr 2 ( c ~ ~.)Cu2.05~6 ~ Y ~. of ~ different x composition, sintered at 960 C 5.3.11 Values of Tc, and Tc,,,,, of the superconducting samples ( ~ i ~. ~ ~ b ~ 2 (. c ~ ~ ~ b., ) ~ ~ Y r ~. of ~ different ) c u ~ x. ~ ~ ~ ~ composition, sintered at 980 C 5.3.12 Values of Tc, o, and Tc, of the superconducting samples ( ~ i ~. ~ ~ b ~. ~ N b ~ of different x )Sr 2 ( c~~~y~,~)c~~,~~o~ composition, sintered at 980 C 5.3.13 Values of Tc, o, and T,, onset of the superconducting samples )Sr 2 ( c ~ ~. ~ Y ~. ~ of different x composition, sintered at 960 C

5.3.14 Values of T,,,o and T,, onset of the superconducting samples ( ~ ~ 0. 4 ~ ~ br 02.( ~~0.3~0.7 3 5 ~ ~ k~2.0506 different composition, sintered at 960 C 5.3.15 Values of Tc,,o and Tc, of the superconducting samples ( ~ i ~. ~ ~ )Sr b 2 ( ~ ~. a ~ ~. ~ ~ b ~, ~ of different. ~ ) x ~ u ~. ~ ~ 0 ~ composition, sintered at 980 C 5.3.16 Values of T,,,o, T,, on,et of the superconducting samples )Sr ~ (c~o.~yo.~ ( ~ ~ 0. 4 ~ ~ 0. 3 5 ~ ~ )C~2.0.5~6 ~ different composition, sintered at 980 C A.111 Lattice parameters of ( ~i~.~~b~&d,)~r~ ( c ~ ~.)Cu ~ Y 2,05~6 ~. ~ samples sintered at 980'~ for 2 hours. xvi

LIST OF FIGURES Figure Page The resistance of mercury drops at about 4.2 K [I]. 1 Comparison between superconductors with perfect diamagnetism and infinite conductivity [2]. Chronological discovery of some of important superconducting materials [5]. Crystalline structure of Bi1212 material where M is the cation doping [7,12]. Magnetization versus applied magnetic field for type I superconductor [2]. Schematic phase diagram illustrating normal and superconducting regions of type I superconductor [2] Magnetization versus applied magnetic field for a type I1 superconductor [2]. Schematic phase diagram illustrating normal, mixed and Meissner regions of type I1 superconductor. <B> denote the average magnetic field in the mixed state of the superconductor [2]. A lattice distortion due to the moving electron. As a negatively charged electron passes through between positively charged ions in the lattice, the ions are attracted inward. This distortion of the lattice creates a region of enhanced positively charge (phonons) which attracts another electron to the area [29]. Formation of Cooper pairs. The two electrons are locked together resulting from virtual exchange of phonons will travel through the lattice [29]. Flow chart for fabrication of (Bi,Pb)- 12 12 and doped superconductors. Graph of Temperature versus Time for sintering process. Graph of Temperature versus Time for annealing process. xvii

4.4 Schematic diagram of four point probe resistance device. 4.5 Illustrates schematically how the principles of AC susceptometry [59]. 4.6 Cross-section view of the coil assembly [59]. 4.7 An experiment arrangement used in an AC Susceptometer. Note the sample moment varies with time in an AC measurement [59]. )CU~.~~O~ 5.1.1 XRD pattems of ( ~ i ~. ~ )Sr2(~a0.3~0.7 ~ b ~. ~ ~ d ~ samples sintered at 960'~ 5.1.2 Cell parameters versus x composition of ( ~ i ~. ~ )Sr2 ~ ( b c ~ ~.,)Cu2.050S ~ Y ~ ~ d. samples ~ sintered at 960'~ 5.1.3 Percentage of volume fraction of 1212 versus x composition of ( ~ i ~. ~ )Sr2 ~ ( b c ~ ~.,)CU~.~~O~ ~ Y ~ ~ d. samples ~ sintered at 960'~ )cu~.~~o~ 5.1.4 XW) patterns of ( ~ i ~. ~ )Sr2 ~ ( b c ~ ~.. ~ Y ~ ~ d. ~ samples sintered at 960'~ 5.1.5 Cell parameters versus composition x of ( ~ i ~. ~ )Sr2 ~ ( b c ~ ~.,) ~ CY ~ U ~ d. ~ samples ~. ~ ~ sintered ~ ~ at 960'~ 5.1.6 Percentage of volume fraction of 1212 versus x composition of ( ~ i ~. ~ )Sr2 ~ ( b c ~ ~.. ~ Y ~ ~ d. ~ samples ) c ~ sintered ~. ~ ~ at o 960'~ ~ 5.1.7 XRD pattems of samples ( ~ i ~. ~ ~ b ~ (, c ~ ~ ~ ~ d )CU~,~~O~,, ) ~ ~ Y r ~ ~ x = 0,0.05, 0.1, 0.15, 0.2 and 0.25 sintered at 980'~ for 2 hours and annealed. 5.1.8 Cell parameters versus x composition of ( ~ i ~. ~ )Sr2 ~ ( b c ~ ~.,)CU~,~~O~ ~ Y ~ ~ d. samples ~ sintered at 980'~ 5.1.9 Percentage of volume fraction of 1212 versus x composition of )Sr2( c ~ ~. ~ Y ~, samples ~ sintered at 980'~ )CU~,~~O~ xviii

5.110 XRD patterns of ( ~ i ~. ~ ~ )Sr2(~a0,3~0,7 b ~ & d ~ sintered at 980'~ ) C U ~ samples. ~ ~ ~ ~ 5.1.11 Cell parameters versus x composition of ( ~ i ~. ~ )Sr2 ~ ( b c ~ ~..)CU~.~~O~ ~ Y ~ ~ d. ~ samples sintered at 980'~ 5.1.12 Percentage of volume fraction of 1212 versus x composition of ( ~ i ~ ~ P b )sr2 ~ (. ~ c ~ d ~,)CU~,~~O~. ~ Y ~ samples ~ sintered at 980'~ 5.1.13 XRD patterns of ( ~ i ~. ~ )Sr2 ~ ( c b ~ ~ ~.)CU~.~~O~ ~ Y ~ ~ ~. ~ d ~ samples sintered at 960'~ 5.1.I4 Percentage of volume fraction of 1212 versus x composition of (Bio.4Pb o.35~dx )Sr2( c ~ ~.)Cu ~ Y 2.05~6 ~. ~ samples sintered at 960'~ 5.1.15 Cell parameters versus composition x of ( ~ i ~, ~ )Sr2 ~ (cag3yg7 b ~.) CU~.~~O~ ~ ~ ~ samples d ~ sintered at 960'~ 5.1.16 XRD patterns of ( ~ i ~ ~ )Sr2 ~ ( c ~ ~ b.)cu2.05~g ~ Y. ~. ~ ~ ~ ~ d ~ samples sintered at 960'~ 5.1.17 Cell parameters versus x composition of ( ~ i ~. ~ ~ )Sr2 b ( ~ c. ~ ~ ~.)CU~.~~O~ ~ ~ Y d ~,. ~ samples sintered at 960'~ 5.1.18 Percentage of volume fraction of 12 12 versus x composition of ( ~ i ~. ~ )Sr2(~a0.3~0.7)C~2,0506 ~ b ~. ~ ~ ~ samples d ~ sintered at 960'~ )CU~.~~O~ 5.1.19 XRD patterns of ( ~ i ~, ~ )Sr2(~a0.3~0.7 ~ b ~, ~ ~ ~ d ~ samples sintered at 980'~ 5.1.20 Cell parameters versus x composition of ( ~ i ~. ~ )Sr2 ~ b ~. )Cu ~ 2.05~a ~ ~ samples d ~ sintered at 980'~ xix

5.1.21 Percentage of volume fraction of 1212 versus x composition of (Bi0.4Pb 0.35~d )Sr2(ca 0.3~0.7 )Cu 2,0S~S samples sintered at 980'~ 5.1.22 XRD patterns of ( ~ i ~. ~ )Sr2 ~ ( c b ~ ~. )CU ~ ~ Y 2.05~6 ~. ~ ~ samples d ~ sintered at 980'~ 5.1.23 Cell parameters versus x composition of ( ~ i ~. ~ )Sr2 ~ ( c b ~ ~,.) ~ CY ~ U ~ ~. ~ samples ~ d. ~ sintered ~ ~ ~ at 980'~ 5.1.24 Percentage of volume fraction of 1212 versus x composition of ( ~ i ~. ~ )Sr2 ~ ( c b ~ ~ ~..)Cu2,050g ~ Y ~ ~ ~. samples ~ d ~ sintered at 980'~ )CU~.~~O~ 5.1.25 XRD patterns of (~i~,~~b~.~nb,)~r~ ( c ~ ~. ~ Y ~. ~ samples sintered at 960'~ 5.1.26 Cell parameters versus x composition of ( ~ i ~. ~ ~ )sr2 b ~ (. c ~ ~ N~ b.)cu~.~~o~ ~ Y ~, samples ~ sintered at 960'~ 5.1.27 Percentage of volume fraction of 1212 versus x composition of )srz( c ~ ~.)Cu ~ Y 2.05~6 ~. ~ samples sintered at 960'~ )CU~.~~O~ 5.1.28 XRD pattern of ( ~ i ~. ~ ~ ( b c ~ ~. ~ ~ Y b ~ ). samples ~ r ~ sintered at 960'~ 5.1.29 Cell parameters versus x composition of ( B ~ ~. ~ P ~ ~ ~ ~ N ~ ~ samples ) s ~ sintered ~ ( at c 960'~ ~ ~ ~ ~ Y ~ ~ ~ ) c 5.1.30 Percentage of volume fraction of 12 12 versus x composition of ( ~ i ~, ~ )l Sr2 ~ ( b c ~ ~.. ~ CY ~ ~ U b. ~ samples ) ~, ~ sintered ~ at ~ 960'~ ~ 5.1.31 XRD patterns of ( ~ i ~. ~ ~ b ~ ( c. ~ ~ N. b )Cu2.05~6 ~ ~ Y ) ~ ~. r ~ samples ~ sintered at 980'~ 5.1.32 Cell parameters versus x composition of ( ~ i ~. ~ ~ )sr2 b ~ ( c. ~ ~ N. b )Cu ~ ~ Y 2.05~6 ~, samples ~ sintered at 980'~

5.1.33 Percentage of volume fraction of 1212 versus x composition of ( ~ i ~. ~ ~,)sr2 b ~ (. c ~ ~ N~ b,)cu~.~~o~ ~ Y ~, samples ~ sintered at 980'~ 5.1.34 XRD patterns of (~i~.~~b~.~nb, )sr2 sintered at 980'~ samples 5.1.35 Cell parameters versus x composition of ( ~ i ~, ~ )sr2 ~ ( b c ~ ~. ~ )Cu2.05~g ~ NY b ~. ~ ~ samples sintered at 980'~ 5.1.36 Percentage of volume fraction of 1212 versus x composition of (~i~.~~b~.~nb, )sr2( c ~ ~.)CU ~ Y 2,05~6 ~, samples ~ sintered at 980'~ 5.1.37 XRD patterns of )Sr2(~a0.3~0,7)~u2.0506 samples sintered at 960'~ 5.1.38 Cell parameters versus x composition of (~i~,~pb~.~~nb, )Sr2( c ~ ~,)Cu2,05~S ~ Y ~. samples ~ sintered at 960'~ 5.1.39 Percentage of volume fraction of 1212 versus x composition of (~i~.~pb~.~~nb, )SrZ( c ~ ~.)CU~.~~O~ ~ Y ~. ~ samples sintered at 960'~ 5.1.40 XRD patterns of )Sr2( c ~ ~.)Cu2.05~6 ~ Y ~, ~ sintered at 960'~ samples 5.1.41 Cell parameters versus x composition of )Sr2( c ~ ~. ~ Y ~. samples ~ ) c sintered u ~. ~ at ~ 960'~ ~ ~ 5.1.42 Percentage of volume fraction of 1212 versus x composition of (~i~,~pb~.~~nb, )Sr2(~ao,3~o,7 )CU~,~~O~ samples sintered at 960'~ 5.1.43 XRD patterns of ( ~i~.~~b~.~~nb,)~r~ sintered at 980'~ (c~~.~y~.~)c~~.~~o~ samples xxi

5.1.44 Cell parameters versus x composition of ( ~ i ~. ~ ~ )Sr2 b ( ~ c. ~ ~ ~ ~.) ~ NCY b U ~. ~ samples. ~ sintered ~ ~ ~ at 980'~ Percentage of volume fraction of 1212 versus x composition of ( ~ i ~. ~ ~ )Sr2 b ( ~ c. ~ ~ ~ ~,)CU~.~~O~ ~ N Y b ~. samples ~ sintered at 980'~ )CU~,~~O~ XRD patterns of ( ~ i ~. ~ )Sr2 ~ ( c b ~ ~., ~ ~ Y ~, ~ ~ samples b ~ sintered at 980'~ Cell parameters versus x composition of ( ~ i ~. ~ ~ b )Sr2 ~,( ~ c ~ ~ N~ b )CU~,~~O~., ~ Y ~ samples ~ sintered at 980'~ Percentage of volume fraction of 1212 versus x composition of ( ~ i ~. ~ )Sr2 ~ ( c b ~ ~ ~.)CU~,~~O~ ~ Y ~ ~ ~, ~ samples b ~ sintered at 980'~ 152 ( B ~ ~, ~ P ~ ~ ~ ~ c ~ ~ x ) = 0, S 0.05, ~ ~ 0.1, ( 0.15, C ~ ~, ~ Y ~ ~ ~ ) C 0.2,0.25, sintered at 960 C (~i0,2~bo.&d, )Sr 2(~a0.3~0.7)Cu2.0506, x = 0,0.05,0.1,0.15, 0.2, 0.25, sintered at 960 C Fr 2(~a0.3~0.7)~u2.05~6, x = 0, 0.05, 0.1, 0.15, 0.2,0.25, sintered at 980 C x = 0, 0.05, 0.1, 0.15, (B~~,~P~~,~c~,)S~~(C~~,~Y~,~)C~~,~~O~ 0.2, 0.25, sintered at 980 C (~io.4pb0.35cdx)sr 2(cao.3~0.7 )Cu2.0506, x = 0, 0.05, 0.1, 0.15, 0.2,0.25, sintered at 960 C The normalized resistance versus temperature of samples (~io.4~b 0.3, ~dx)sr2(~a0.3~0.7)cu2.050~, x = 0, 0.05, 0.1, 0.15, 0.2,0.25, sintered at 960 C xxii

(~io.4~bo.35~dx)sr2(~a0.3~0.7)c~2.0506, x = 0,0.05, 0.1, 0.15, 0.2,0.25, sintered at 980 C ( ~ ~ 0. 4 ~ ~ )Sr2(~a0.3~0.7 0. 3 5 ~ ~ )C~2.0508, ~ x =0, 0-05, 0.1, 0.15, 0.2,0.25, sintered at 980 C ( ~ i ~ ~ ~ ~ b ~ ~ ~ N b ~ ) ~ x = r 0, ~ 0.05, ( ~ 0.1, a 0.15, ~ ~ ~ ~ ~, ~ ) C u ~ ~ 0.2,0.25, sintered at 960 C (~io.2~b0.6~x )Sr2 (~a0.3~0.7)~u2.050g, x = 0,0.05,0.l, 0.15, 0.2,0.25, sintered at 960 C ( B ~ ~, ~ P ~ ~ ~ ~ ~, ) S x = ~ 0, ~ 0.05, ( C 0.1, ~ 0.15, ~, ~ Y ~ ~ ~ ) C ~ ~ 0.2,0.25, sintered at 980 C (~io.2pbo.6mx )Sr2 (~a0.3~0.7)c~2.0506, X = 0,0.05,0.l, 0.15, 0.2,0.25, sintered at 980 C (Bio.4pb0.35mx)Sr2(ca0.3~0.7 )Cu2.0506, x = 0, 0.05,0.1,0.15, 0.2,0.25, sintered at 960 C (~io.4~bo.35~b~ )Sr 2(~a0.3~0.7 )Cu2.0508, x = 0,0.05,0.1,0.15, 0.2,0.25, sintered at 960 C (Bio.4~bo.35mx)Sr 2(cao.3yo.7 )Cu2.0506, x = 0, 0.05, 0.1,0.15, 0.2, 0.25, sintered at 980 C 0.2, 0.25, sintered at 980 C xxiii

5.4.1 (a-b) AC susceptibility component (a) it and (b) i of ( B ~ ~ ~ ~ P ~ ~ ~ ~ c ~ ~, x=0.05 ) s ~ sintered ~ ( at Y 980 C ~ ~ ~ c ~ ~, ~ ) c 21 1 5.4.2(a-b) AC susceptibility component (a) i' and (b) i of ( ~ i ~. ~ ~ b ~ (. ~ ~ ~ ~. d ~, ) ~ ~ a r, ~ x=0.1. ~ sintered ) ~ at u 980 C ~. ~ ~ 0 ~ 5.4.3(a-b) AC susceptibility component (a) it and (b) i of ( ~ i ~. ~ ~ b ~ (. ~ ~ ~ d, ) ~ ~ r ~, ~ x=o.l5 ~ sintered a ~ at 980 C ~ ~ ) ~ u ~ ~ 5.4.4(a-b) AC susceptibility component (a) < and (b) i of ( B ~ ~ ~ ~ P ~ ~ ~ ~ c, ~ x=0.2, sintered ) s ~ at 980 C ~ ( Y ~ ~ ~ c ~ ~ ~ 5.4.5(a-b) AC susceptibility component (a) i' and (b) i of (B~~~~P~~~~c~,)s~~(Y~~~c~~,~)c~~, x=0.25 sintered at 980 C 5.4.6(a-b) AC susceptibility component (a) < and (b) i of ( B ~ ~ ~ ~ P ~ ~ ~ ~ c ~, x=0.05 ) s sintered ~ ~ ( at 980 C Y ~ ~ ~ c ~ ~ ~ ~ ) 5.4.7(a-b) AC susceptibility component (a) < and (b) of, x=0.15 sintered at 980 C 218 ( B ~ ~ ~ ~ P ~ ~ ~ ~ c ~ ~ ) s ~ ~ ( Y ~ ~ ~ c ~ ~ 5.4.8(a-b) AC susceptibility component (a) and (b) of (B~~,~P~~,~c~,)s~~(Y~,~c~~,~)c~~~~~, x=0.25 sintered at 980 C 5.4.9(a-b) AC susceptibility component (a) and (b) of, x=0.2 sintered at 960 C ( B ~ ~ ~ ~ P ~ ~ ~ ~ N ~ ~ ) s ~ ~ ( Y ~ ~ ~ c ~ ~