Activity #1 - Getting Started in Mars Exploration

Similar documents
Scale: Mars is 6,787 km in diameter. Image 1. What is the feature across the middle? What do you think the circles on the left side are?

Activity 7 At a Glance

WHAT DO THESE IMAGES SHOW?

Missions mars. Beyond the Book. FOCUS Book

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a "geologic history" for a planet or moon is?

DRAFT. Caption: An astronaut climbs down a lunar module on the surface of the Moon. <Insert figure 1.4 here; photograph of the surface of Mars>>

MAPPING MARS TEACHER PAGE

MAPPING THE SURFACE OF MARS

Level One, Lesson 1: The Red Planet

Mars Exploration Script

Mars Update. Presented by NASA/JPL Solar System Educator Don W. Brown

AT A GLANCE. Content Goals Sand grains contain clues about their origin and history. A sand sample reflects the geology of its watershed

MARS, THE RED PLANET.

The Main Points. The View from the Surface. Geology of Mars. Lecture #20: Reading:

InSight Spacecraft Launch for Mission to Interior of Mars

Remote Sensing/Reflectance Spectrometer

GEOLOGY ON MARS. Unit 1 - Chapter 3-1. Analyzing New Evidence

Strange New Planet. Time Budget: 1 hour

1.2: Observing the Surfaces of Mars and Earth

ROVERQUEST: Greetings from Gusev

What is Crater Number Density?

MARS. The Red Planet

What You Already Know

Introduction to Astronomy

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

ACTIVITY 6 Using Spectra to Search for an Earth-like Planet

Terrestrial Atmospheres

15 Surface Water Flow Features on Mars

MSIP Proposal Milks Period 4

Solar System. Reading Passages Included. Created By: The Owl Teacher

Mars for Earthlings. Purpose: Recognize the purpose and need for understanding the scale and context of various remote sensing imaging techniques.

Author Jamey Acosta The articles in this book are collected from the TIME For Kids archives.

Space. Introduction Strategies. Dear Teachers,

Challenger Center Teacher Resources for Engaging Students in Science, Technology, Engineering, and Math

GOOD VIBRATIONS Remote Sensing Data Collection: Thermal Emission Spectrometer (TES)

ALL ABOUT THE PLANETS

Moon. Grade Level: 1-3. pages 1 2 pages 3 4 pages 5 page 6 page 7 page 8 9

ì<(sk$m)=bebjjj< +^-Ä-U-Ä-U

STUDENT RESOURCE 1.1 INFORMATION SHEET. Vocabulary

Students identify the International Space Station (ISS) and different types of rockets as objects in the sky built by humans.

Extension Activities

David Baxter. GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School

Red Planet Mars. Chapter Thirteen

Super Quiz. 4 TH Grade

ESSENTIAL QUESTION How can we use the Mars Map and photographs of Mars to learn about the geologic history of the planet?

Full Moon. Phases of the Moon

Hubble Telescope Picture of Mars

Appearances Can Be Deceiving!

Problem Set 3: Crater Counting

of stars constellations. Perhaps you have seen The Big Dipper, Taurus the bull, Orion the hunter, or other well-known star groups.

TIME: 45 minutes. LESSON: Curious About Clouds GRADE: 1 st SUMMARY:

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

Clouds & Mission for NASA

Mapping the Moon Lesson 7: Making a Model

10/31/2010. Opposition and Conjunction. Opposition occurs every 2 years. Best opposition at perihelion. Percival Lowell

TEACHER PAGE CELEBRATING SPACE: A QUICK HISTORY

Why scientists study the planets

Supporting Video:

VOYAGE OF DISCOVERY TEACHER PAGE

Opposition and Conjunction

Weather Observations. Weather Observations. 1 of 10. Copyright 2007, Exemplars, Inc. All rights reserved.

Grading Summary: Question 1: 80 points. Question 2: 20 points. Total: 100 points

Mars. Professor Withers Boston University Guest lecture in AS105 Alien Worlds. Thursday :00 NASA

Mini 4-H. Developed by Area VII Extension Youth Educators Draft Purdue University Cooperative Extension Service

From Celestial North, this is IT S OVER YOUR HEAD for the week of. The New Year brought together revelers the world over for jubilant parties

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars

Erosional Features. What processes shaped this landscape?

The Outer Planets. Video Script: The Outer Planets. Visual Learning Company

Astronomy Express Lapbook Mini Lapbook, Coloring Sheets, Copywork, Crafts, and Games

View Through a Telescope Classroom Activity

By Positively Autism. Science-Themed Reading Comprehension Passage and Activities For Students with Autism

EROSIONAL FEATURES. reflect

Highs and Lows Floods and Flows

Planet Power. Of all the objects in our solar system, eight match these requirements: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, & Neptune

Boy Scout Badge Workshop ASTRONOMY

NARRATOR: Welcome to Astronomy Behind the Headlines, a podcast by the Astronomical Society of the Pacific.

Meeting the neighbors. The exploration of Mars

Seven Minutes of Terror, Eight Years of

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

The Latest from Mars: Recent Results and the Next Decade of Exploration

Title: Planets, Asteroids and Stars

Curiosity Overview Nasa

Quiz 3 is available for pickup in front

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives:

For Creative Minds. And the Winner is...

Intensity of Light and Heat. The second reason that scientists prefer the word intensity is Well, see for yourself.

The SPE Foundation through member donations and a contribution from Offshore Europe

Mars rover Opportunity signs off after 15 years

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve

National Aeronautics and Space Administration

Learning Lab Seeing the World through Satellites Eyes

ACTIVITY CLASSROOM. Observe the Moon's Phases. General Information

Materials: - containers for the centre of the volcano, to contain the eruption. Use observation, recording, and sampling techniques to construct and

LETTER TO FAMILY. Science News. Cut here and paste onto school letterhead before making copies. Dear Family,

Mars Opposition Friday 27 th July 2018

1UNIT. The Universe. What do you remember? Key language. Content objectives

From VOA Learning English, this is Science in the News. I m June Simms.

Science Grade 01 Unit 07 Exemplar Lesson 02: Investigating the Moon, the Stars, and the Sky

Geologic Time Scale and Crookston Geologic History

Dive In What is an advantage of sending unmanned crafts to space?

Transcription:

Materials Activity #1 - Getting Started in Mars Exploration Paper, staples, glue, tape, markers, a collection of Mars images, etc., to construct a journal Preparation Collect newspaper or magazine articles about Mars Find out current status of Mars exploration from NASA s Mars Web site. Procedure 1. Have each student title a piece of paper What is Mars Like? Next, have them divide the page into three columns. Label one column Image Number, the middle column What I See and the last column What I Wonder About It. Explain to your students that they will be learning more about Mars over the next few weeks, including conducting some classroom experiments, exploring live data and images from Mars, and comparing Mars and Earth. Ask them to pay attention to news about Mars and to bring in Mars-related things for the classroom and bulletin board. 2. Organize the students in small groups and distribute Image Sets to each group. Ask students to look at the images and write their observations and questions on their paper. 3. After about ten minutes, conduct a discussion exploring their first impressions using questions such as: How were these images taken? What images interested you most? Why? What do you think caused the surface to look like this? What questions do these images raise for you? How is Mars different from Earth? What is Mars? What is a planet?

This step enables you to get a sense of what your students understand about Mars and space exploration and what misconceptions they might have. The focus at this stage is for you to listen to their comments and questions and not to explain facts about Mars. Generate a discussion about what students think Mars is like. Students might mention that it is rocky, which they know from the Pathfinder images. They might know that Mars is a point of light in the night-time sky because they ve seen it. They might know that it is far away because it took the Pathfinder seven months to get there. Generate some discussion about what interests them about Mars, what they re curious about, and what questions they have. Have them record their questions in their journals. Your students comments might provide you with the opportunity to talk about the role of evidence in furthering understanding. You might mention that, for most of time, whatever people knew about Mars came from what they saw with their eyes and, later, what they could see through a telescope. Now robotic missions to Mars (like Pathfinder) provide tremendous amounts of new information. The profound lack of data constrains our current understanding of Mars, so even the most expert scientists are excited about the new opportunities these missions provide to learn about Mars. 4. For their Mars Exploration Journal, have students bring in a notebook or create a booklet by stapling about 20 sheets of paper together. Have them design a cover. If possible, start making the cover in class and finish it as homework. At a minimum, the journal needs to have the title Mars Journal, the student s name and the start date. Explain that they will record their notes and ideas as they learn about Mars. Their notebooks will also include observations from their classroom experiments, graphs of their data, sketches they draw, and questions that occur to them as the learn and explore. You might provide some pictures clipped from magazines or downloaded from the Web that students can use as part of their cover. Print a copy of the Image Sets

Scale: Mars is 6,787 km in diameter. Image 1 What is the feature across the middle? What do you think the circles on the left side are?

Image 2 On Earth, what are some things about the size of these craters? Why do some of the craters overlap? In what order were the craters formed? What do the patterns around the craters reveal about the nature of the surface? Have you ever seen an impact crater? 15 km Scale: Top crater is 15 km across. Image 3 What do you think caused the shape around these craters? Were these craters formed at the same or at different times? 30 km Scale: Large crater is 30 km across.

Image 4 What might this feature be? How big is the feature in this image? 250 km Image 5 What is the line on the horizon above the Martian surface? How high above the surface is it? What causes it to be visible? Scale: The large crater in the upper right is 200 km in diameter.

Image 6 Which came first, the volcano or the impact craters? How can you tell? What might have caused the channels on the side of the volcano? What do you think the lines are? What might have caused them? 100 km Scale: Lower volcano is 90 x 130 km. Image 7 What do you think caused the canyon? What do you think shaped the cliffs on the edges of the canyon? How did this canyon get so wide? 100 km

100 km Scale: The crater in the lower right is about 100 km across. Image 8 Which came first, the fractures or the large crater left of center? Which came first, the crater in the lower right or the channel? Which direction did the fluid flow? Is any fluid apparent now? What caused the tails behind the small craters in the channel? What sequence of events and processes makes most sense in explaining all these features?

Image 9 What is this ellipse? How would you describe this region? How might the teardropshaped landforms have formed? What might make this a desirable landing site? 100 km Scale: Ellipse is 100 x 200 km. Image 10 What planet is this crater on? How can you tell? Is this crater more like the one in Image 2 or the one in Image 3? Why? Is this a fresh or an aged crater? How does this crater compare in size to those in Images 2 and 3? Scale: Crater is 1.2 km in diameter.

Scale: The view east of Viking 1 s landing site. The furthest point of the right-hand most trench is 3 m away from the lander. The smaller trenches are about 10 cm wide. Image 11 On July 20, 1976, Viking I landed in the Chryse Planitia (i.e., the Chryse Plain) and was the first spacecraft to land successfully on Mars. Scientists think the Chryse Planitia is an outwash plain, and one reason they chose to land there is that it is relatively flat, increasing the chances of a safe landing. Viking I s robotic arm dug the trenches in the foreground to reveal the soil just below the surface and to collect soil for several experiments. Note the winddeposited dust behind some of the rocks. As measured by Viking, temperatures on a typical day ranged from -85 o C to -30 o C and wind speeds were around five meters per second with gusts up to 25 meters per second. Pathfinder also landed in the Chryse Planitia, roughly 850 km east of this site. How big are the largest rocks? Does this look like any place on Earth? If so, where? Can you tell if it is hot or cold? What might scientists learn from sampling in a place like this? How does this scene compare to the one around Pathfinder s landing site?

200 km Scale: Ellipse is 100 x 200 km. Image 12 What information does this wide-area view add to your understanding of Image 9? Do you see anything that might make this an interesting area to explore?

Image 13 Scale: Rover is 65 cm long, 48 cm wide, and 30 cm tall. This image was taken on Pathfinder s third day. Here, Sojourner approaches Barnacle Bill, the small rock on the left, and Yogi, the large rock in the upper right-hand corner. Sojourner used its Alpha Proton X-ray Spectrometer (APXS) and cameras to determine the mineral composition of rocks and soil around the landing site. The lander's ramp and part of a deflated airbag are visible. How many different general rock shapes can you see? What causes rocks to be different shapes? Is the surface of Mars dusty? How can you tell? Image 14 Scale: The Twin Peaks are approximately 1 km away and 50 m tall. This image was taken on Pathfinder s fourth day and shows "Twin Peaks, the two hills about one kilometer away from the landing site. Does this look like any place on Earth? Why did the landing site look so smooth when it is really full of boulders? What are some ways a plain like this can become littered with rocks?

500 km Scale: Ares Vallis is about 1,500 km long. Image 15 What information does this wide-area view add to your understanding of Image 12? How much water flowed in this region, a little or a lot? Do you see any sources for water? Why is the area at the end of the channel so smooth?

Image 16 How big is this area? Is Ares Vallis the only place water flowed? Which direction is uphill? What is the general topography of this region? Where might the water that flowed in these channels have come from? Describe the distribution of craters in this region. What might explain this pattern of distribution? What are some differences between the craters on the plain and in the highlands? What might explain the differences between the craters in these two areas? What do you think the Chryse Planitia looked like when water flowed in the channels?

1000 km

Mars Exploration Timeline Mars Pathfinder 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 Mars Global Surveyor Mars Surveyor 98 Orbiter Mars Surveyor 98 Lander Mars Surveyor 01 Orbiter Mars Surveyor 01 Lander Mars Surveyor 03 Lander Mars Surveyor 03 Orbiter Key Development Cruise Aero Braking Prime Mission Mapping Phase Relay Phase Extended Mission Every two years, Mars and Earth align so that a spacecraft can travel efficiently between the two planets. Over the next decade, NASA plans to launch new missions each time Earth and Mars are in a position for efficient travel. Mars Global Surveyor (1997) The orbiter will map the planet's atmosphere and surface. It will look for evidence of surface water, study the surface geology and structure, and examine changes in Martian weather for at least one Martian year (about two Earth years). Mars Surveyor `98 (1998-99) The lander will land near the edge of Mars' south polar cap and focus on studies of geology, weather, and past and present water resources. Before touchdown, it will release two microprobes that will drop into the soil to search for the presence of subsurface water. The orbiter will examine the atmosphere and changes in water vapor during the Martian seasons. Mars Surveyor `01 (2001) The lander will carry a rover capable of traveling dozens of kilometers to gather surface dust and soil samples. There will also be a test of our ability to produce rocket propellant using Martian rocks and soil as raw materials. The orbiter will study the mineralogy and chemistry of the surface, including the identification of water resources just below the Martian surface. Mars Surveyor `03 (2003) This lander will carry a wide-ranging rover to collect samples from a different part of the planet. The orbiter will provide the complex links needed for communication and navigation for this and future surface missions. NASA scientists are waiting to see what this current set of missions will reveal about Mars before deciding where to send the 2005 and 2007 missions and what data they should collect.