ASTROFÍSICA NUCLEAR (EXPERIMENTAL)

Similar documents
The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

Recent neutron capture measurements at FZK

Nuclear Astrophysics

From Notre Dame to National Labs: Cross sections at no charge!

Studying Neutron-Induced Reactions for Basic Science and Societal Applications

1 Stellar Abundances: The r-process and Supernovae

Nuclear astrophysics of the s- and r-process

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma

Reaction measurements on and with radioactive isotopes for nuclear astrophysics

Zach Meisel, PAN 2016

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul

Experimental neutron capture data of 58 Ni from the CERN n TOF facility

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows

Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg

The r-process and the νp-process

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

Perspectives on Nuclear Astrophysics

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models

Present and Future of Fission at n_tof

Nuclear robustness of the r process in neutron-star mergers

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

This paper should be understood as an extended version of a talk given at the

Neutron induced reactions & nuclear cosmo-chronology. chronology. A Mengoni IAEA Vienna/CERN, Geneva

QRPA calculations of stellar weak-interaction rates

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

Scientific goal in Nuclear Astrophysics is to explore:

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

JINA. Address open questions by working on the nuclear physics and the astrophysics

STATUS AND PERSPECTIVES OF THE N_TOF FACILITY AT CERN. Marco Calviani (CERN) and the n_tof CERN for the n_tof Collaboration

Nuclear Burning in Astrophysical Plasmas

Cross section measurement of 209 Bi(n,γ) 210 Bi g and s process abundance predictions in low-mass AGB stars

Neutron capture cross sections of 69,71 Ga at n TOF EAR1

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

ILE, Osaka University ILE, Osaka February 3, 2014

The origin of heavy elements in the solar system

Neutron capture measurements at the CERN neutron Time Of Flight (n_tof) facility. Nuclear astrophysics aspects

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Nuclear Astrophysics

How Nature makes gold

Nuclear physics input for the r-process

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

Theory for nuclear processes in stars and nucleosynthesis

Abundance Constraints on Early Chemical Evolution. Jim Truran

Nuclear Astrophysics - I

Asymptotic Giant Branch stars

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process

R Process Nucleosynthesis And Its Site. Mario A. Riquelme Theore<cal Seminar Fall 2009

Supernova events and neutron stars

Stellar Explosions (ch. 21)

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Experiments in Ion Storage Rings: mass and lifetime measurements

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

Neutron capture cross section of 25 Mg and its astrophysical implications

Nuclear Astrophysics

Astrophysical Nucleosynthesis

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with:

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Letter of Intent: Nuclear Fusion Reactions from laser-accelerated fissile ion beams

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

High-precision (p,t) reactions to determine reaction rates of explosive stellar processes Matić, Andrija

Radiometric Dating (tap anywhere)

Kocaeli University: AKTIVITIES. R. Taygun GÜRAY. ANNUAL MASCHE TEAM MEETING 26. November Goethe University - Germany

Current studies of neutron induced reactions regard essentially two mass regions, identified in the chart of nuclides: isotopes in the region from Fe

Evolution of Intermediate-Mass Stars

EVOLUTION OF SHELL STRUCTURE

Nuclear astrophysics at ISOLDE

Explosive nucleosynthesis of heavy elements:

Nucleus. Electron Cloud

Atoms and the Periodic Table

Experimental Study of Stellar Reactions at CNS

Conceptos generales de astrofísica

the astrophysical formation of the elements

New measurement of the 62 Ni(n,γ) cross-section with n_tof at CERN

Measurements of liquid xenon s response to low-energy particle interactions

Section 12. Nuclear reactions in stars Introduction

Go upstream of the Milky Way!

Stellar Evolution: what do we know?

Theoretical Nuclear Physics

Nobuya Nishimura Keele University, UK

Explosive Events in the Universe and H-Burning

p-process simulations with an updated reaction library I. Dillmann (TUM), F. Käppeler (FZK), T. Rauscher (Basel), F.-K. Thielemann (Basel)

Measurement of the neutron capture cross section of gadolinium even isotopes relevant to Nuclear Astrophysics

Evolution and nucleosynthesis of AGB stars

X-ray superburst ~10 42 ergs Annual solar output ~10 41 ergs. Cumming et al., Astrophys. J. Lett. 559, L127 (2001) (2)

X-RAY BURSTS AND PROTON CAPTURES CLOSE TO THE DRIPLINE. The hydrogen-rich accreted envelopes of neutron stars in binary systems are

Nucleosynthesis in core-collapse supernovae

Grade 11 Science Practice Test

Nucleosynthesis. W. F. McDonough 1. Neutrino Science, Tohoku University, Sendai , Japan. (Dated: Tuesday 24 th April, 2018)

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, 2013

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams

Rare Isotopes: The DNA of Stellar Explosions

PHY320 Class Test Topic 1 Elemental Abundances All questions are worth 1 mark unless otherwise stated

Transcription:

ASTROFÍSICA NUCLEAR (EXPERIMENTAL) Visión general y algunos ejemplos César Domingo Pardo

Outline Introducción X-ray bursts: rp-process Heavy elements nucleosynthesis: the slow (s-) and the rapid (r-) neutron capture processes R-process in core collapse supernovae: experiments with radioactive ion beams S-process in massive stars: neutron capture measurements

Outline Introducción X-ray bursts: rp-process Heavy elements nucleosynthesis: the slow (s-) and the rapid (r-) neutron capture processes R-process in core collapse supernovae: experiments with radioactive ion beams S-process in massive stars: neutron capture measurements

The context of (experimental) nuclear astrophysics LHC Standard Model

número de neutrones en el núcleo número de protones en el núcleo

En química: Estructura atómica (e- valencia) Reacciones químicas + =

En astrofísica: Estructura nuclear Reacciones nucleares (NUCLEOSÍNTESIS) Energy 3/ 2 CM 2π 2 ( ER, i ) < συ >= ( ωγ ) i exp µ kt h i kt La estructura cuántica del núcleo determina la tasa de producción (nucleosíntesis) estelar La estructura nuclear determina las reacciones nucleares que pueden dar lugar a nuevos isótopos, nuevos núcleos, nuevos elementos.

How to bring x-ray bursts to the lab?

How to bring x-ray bursts to the lab? RIB Facility 3/ 2 Radioactive ion of interest (proton rich) (see Alejandro s talk) CM 2π 2 ( ER, i ) < συ >= ( ωγ ) i exp µ kt h i kt γ-ray Detectors LUCRECIA AGATA

To learn more Bibliography: H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001) Published 16 April 2001, End Point of the rp Process on Accreting Neutron Stars A.Parikh, et al., The effects of variations in nuclear interactions on nucleosynthesis in thermonuclear supernovae, Astronomy & Astrophysics, Volume 557, id.a3, 11 pp DOI: 10.1051/0004-6361/201321518 A. Parikh, et al., Nucleosynthesis in type I X-ray bursts, Progress in Particle and Nuclear Physics, Volume 69, p. 225-253. (2013) Nature 302, 317-319 (24 March 1983); doi:10.1038/302317a0 Sub-second pulsations simultaneously observed at microwaves and hard X rays in a solar burst The JINA center for the evolution of the elements: http://www.jinaweb.org/ Schools: 3rd Astrophysical Nuclear Reaction Network School https://indico.gsi.de/conferencedisplay.py?ovw=true&confid=4596

The context of (experimental) nuclear astrophysics

just after Big-Bang

The context of (experimental) nuclear astrophysics

Nucleosynthesis of the light-to-medium heavy nuclei (up to Fe) Hydrostatic evolution stages of massive stars Iron group elements are built in the last burning phase before SN explosion 25 M Massive stars 8 M < M < 70 M M = 1.989x10 30 Kg Beyond the Fe-group, no further fusion reactions (charged particles) are possible

after first (massive) stars evolved

What kind of reactions could originate the heaviest nuclei? BB Fusion H He C O Fe Ge Sr Te Ba Pt Pb

What kind of reactions could originate the heaviest nuclei? Neutrons produce 75% of all the elements 0.005% of the total abundances (!) 10-12 orders-of-magnitude difference between H and the rarest (heaviest) nuclei (!) BB Fusion Neutrons H He C O Fe Ge Sr Te Ba Pt Pb

What kind of reactions could originate the heaviest nuclei? Neutrons produce 75% of all the elements 0.005% of the total abundances (!) 10-12 orders-of-magnitude difference between H and the rarest (heaviest) nuclei (!) BB Fusion Neutrons H He C O Fe explosive stellar environments, SNe, NS-NS, red giants Ge Sr Te Ba Pt Pb

El origen de los elementos pesados: procesos s y r s-process r-process core He-burning shell C-burning SN,N-StarStar Mergers, etc? 3-3.5 10 8 K ~1 10 9 K kt=26 kev kt=91 kev 10 6 cm -3 10 11-10 12 cm -3 22 Ne( 4 He,n) 25 Mg massive stars > 8 M Where is the site? How is the environment? Entropy Rotation, 3D, etc

The rapid (r-) neutron capture process Several candidates: SNe, NS-Mergers, NS-BH Mergers, etc High entropy and neutron density conditions required T = 10 8-10 10 K N n = 10 20-10 27 cm -3 _ ν - e + n p + e ν e + p n + e + Argast et al., 2004

R-process r-process nucleosynthesis nuclear physics input: the Pt-peak known t 1/2 HOT COLD _ ν e + n p + e - ν e + p n + e + (γ,n) (n, γ) NucNet network code, B. Meyer et al., Clemson University FRDM+QRPA (P. Möller) + JINA Reaclib Database (Cyburt)

R-process nucleosynthesis: relevant nuclear input known t 1/2 Beta-decays tailor the final abundance pattern How well do we know such β-decays?

http://www.quarknova.ca/

How to bring Supernovae to the lab? RIB Facility Radioactive ion of interest (neutron rich) (see Alejandro s talk)

How to bring Supernovae to the lab? 1 1,, + = N Z N Q MZMβ RIB Facility Radioactive ion of interest (neutron rich) (see Alejandro s talk) + = β β Q E N z N Z i i Ei R Z f E S T 0 1 1,, 2 1/ ),, ( ) ( 1 MM + + = β β β β Q E N z N Z i Q E S N z N Z i n i i n Ei R Z f E S Ei R Z f E S P 0 1 1,, 1 1,, ),, ( ) ( ),, ( ) ( MMMM( ) = 0 2 3/, ) / exp( ) ( 8 de kt E E E kt v N Z σ π σ M

How to bring Supernovae to the lab? 1 1,, + = N Z N Z Q MMβ RIB Facility Radioactive ion of interest (neutron rich) (see Alejandro s talk) + = β β Q E N z N Z i i Ei R Z f E S T 0 1 1,, 2 1/ ),, ( ) ( 1 MM + + = β β β β Q E N z N Z i Q E S N z N Z i n i i n Ei R Z f E S Ei R Z f E S P 0 1 1,, 1 1,, ),, ( ) ( ),, ( ) ( MMMM( ) = 0 2 3/, ) / exp( ) ( 8 de kt E E E kt v N Z σ π σ M

Principle of TOF Mass Measurements momentum analysis p=mv Bρ start L stop B ρ = m q v v = L t L = const Bρ = const m q = const t production target

time-domain (oscilloscope): Timing Detector Fourier analysis (frequency domain): Detector f1 f2 1 ( m / q) 1 ( m / q) = 2 f γ m / q - 2 t

stable isotopes r -process path β-decay path Pt Ir Os Re W Ta Hf Lu Yb Tm Er Au Hg Tl Pb S n = M Z,N M Z,N-1 = 2-3 MeV Bi one/two neutron emission r-process path Po neutron number 126 Stellar Nucleosynthesis (A 200) At

First observation of Te in metal poor stars (!!) I. Roederer et al., The Astroph. Journ. Lett. 2012 Connection with RIKEN

Other (weaker) neutron sources in the universe: red giants

Two different s-process sites Main s-process 90<A<210 Weak s-process A<90 TP-AGB stars 1-3 M shell H-burning He-flash 0.9 10 8 K 3-3.5 10 8 K kt=8 kev kt=23 kev 10 7-10 8 cm -3 10 10-10 11 cm -3 13 C( 4 He,n) 16 O 22 Ne( 4 He,n) 25 Mg massive stars > 8 M core He-burning shell C-burning 3-3.5 10 8 K ~1 10 9 K kt=26 kev kt=91 kev 10 6 cm -3 10 11-10 12 cm -3 22 Ne( 4 He,n) 25 Mg

The s-process mechanism φ n small s process in Massive Stars (Red Giants) λ β >> λ n,γ,γ τ β << τ n,γ La, Ba s process Pb, Bi core He-burning shell C-burning 3-3.5 10 8 K ~1 10 9 K kt=25 kev kt=90 kev 10 6 cm -3 10 11-10 12 cm -3 22 Ne( 4 He,n) 25 Mg = A Z(n,γ) A+1 Z (n,γ) Cross Sections

How to bring AGB and Massive Stars to the lab? Neutron beam facility with neutron energies similar to the stellar envionment Sample of the isotope of interest (stable or radioactive)

CERN n_tof facility C. Rubbia et al., A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 ev to 250 MeV, CERN/LHC/98-02(EET) 1998.

CERN n_tof facility n_tof 200 m Tunnel Sample Pb Spallation Target Proton Beam 20GeV/c 7x10 12 ppp Booster 1.4 GeV Neutron Beam 10 o prod. angle Linac 50 MeV PS 20GeV

(n,γ) Cross sections via prompt γ-ray(s) detection BaF 2 Total Absorption Calorimeter (TAC) n (Z,A) (Z,A+1) + C 6 D 6 based Total Energy Detector (TED) César Domingo-Pardo

(n,γ) Cross sections via prompt γ-ray(s) detection BaF 2 Total Absorption Calorimeter (TAC) n (Z,A) (Z,A+1) + C 6 D 6 based Total Energy Detector (TED) César Domingo-Pardo

Example: Temperature in TP AGB Stars TP-AGB stars 1-3 M shell H-burning He-flash 0.9 10 8 K 3-3.5 10 8 K kt=8 kev kt=23 kev 10 7-10 8 cm -3 10 10-10 11 cm -3 13 C( 4 He,n) 16 O 22 Ne( 4 He,n) 25 Mg

Temperature in TP AGB Stars How hot is the stellar environment where s-process nucleosynthesis takes place? λ β (T) 152 Gd 153 Gd 154 Gd 155 Gd 156 Gd 157 Gd 151 Eu 152 Eu 153 Eu 154 Eu 155 Eu 156 Eu 150 Sm 151 Sm 93 a 152 Sm 153 Sm 154 Sm f β = ( < σ γ > ( < σ > γ N N s s ) ) 151Sm 152 Gd λβ ( T ) = 151Sm 154Gd λβ vt nn < σ γ > 151Sm N s,152gd & N s,154gd

Temperature in TP AGB Stars How hot is the stellar environment where s-process nucleosynthesis takes place? λ β (T) 152 Gd 153 Gd 154 Gd 155 Gd 156 Gd 157 Gd 151 Eu 152 Eu 153 Eu 154 Eu 155 Eu 156 Eu 150 Sm 151 Sm 93 a 152 Sm 153 Sm 154 Sm f β = ( < σ ( < σ γ γ > > N N s s ) ) 151Sm 152 Gd λβ ( T ) = 151Sm 154Gd λβ vt nn < σ γ > 151Sm Just measure <σ γ > 151Sm N s,152gd First challenge: & 151 N s,154gd Sm does not exist in Earth!!!

Temperature in TP AGB Stars ILL Grenoble Φ n = 1.5x10 15 n/cm 2 /s few grams of 150 Sm 150 Sm 151 Sm 93 a

Temperature in TP AGB Stars MACS-30 = 3100 ± 160 mb T He = 2.5-2.8x10 8 K T H = 1x10 8 K 152 Gd 153 Gd 154 Gd 155 Gd 156 Gd 157 Gd 151 Eu 152 Eu 153 Eu 154 Eu 155 Eu 156 Eu 150 Sm 151 Sm 93 a 152 Sm 153 Sm 154 Sm U Abbondanno et al. Phys. Rev. Lett. 93 (2004), 161103 S. Marrone et al. Phys. Rev. C 73 (2006) 03604

Last slide: links to learn more JINA-CEE youtube seminar series: nucleosynthesis topics, theory, observations and experiments https://www.youtube.com/channel/ucta4bt0wq6myduyocvsyr5a WEBNUCLEO (B. Meyer s blog and code): nuclosynthesis network code + examples to learn https://sourceforge.net/u/mbradle/blog/ MESA (Modules for Experiments in Stellar Astrophysics) https://sourceforge.net/projects/mesa/ NuGRID: http://www.nugridstars.org/ NuPECC:Nuclear Physics European Collaboration Committee http://www.nupecc.org/?display=lrp2010/main