Lecture 12 - Meiosis

Similar documents
Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes

Meiosis and Sexual Life Cycles

BIOLOGY. Meiosis and Sexual Life Cycles CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation

Meiosis and Sexual Life Cycles

Ladies and Gentlemen.. The King of Rock and Roll

Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes

Ch. 13 Meiosis & Sexual Life Cycles

Meiosis and Sexual Life Cycles

QQ 10/5/18 Copy the following into notebook:

You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the

Chapter 13: Meiosis & Sexual Life Cycles

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome

Chapter 11 Meiosis and Sexual Reproduction

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4]

Biology, 7e (Campbell) Chapter 13: Meiosis and Sexual Life Cycles

MEIOSIS C H A P T E R 1 3

SEXUAL REPRODUCTION & MEIOSIS

Chapter 13: Meiosis & Sexual Life Cycles

Reproduction & Cell Types

Sexual Reproduction and Meiosis. Chapter 11

Meiosis. Introduction. A life cycle is the generation-to-generation sequence of stages in the reproductive history of an organism.

Agenda. 1. Lesson Learning Goals 2. Meiosis 3. Meiosis Bingo

Outline for today s lecture (Ch. 13)

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced.

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1

Meiosis and Sexual Reproduction

What is Mitosis? What is the purpose of Mitosis? Growth Repair Asexual reproduction What is the ultimate result of Mitosis?

Chapter 13: Meiosis and Sexual Life Cycles

Almost all human cells contain 46 chromosomes, and are diploid (2n). Q: If a sperm cell has 46 chromosomes (2n) & an egg cell has 46 chromosomes

Meiosis. Section 8-3

Meiosis. Bởi: OpenStaxCollege

Meiosis and Sexual Reproduction. Chapter 9

Meiosis and Sexual Reproduction. Chapter 10. Halving the Chromosome Number. Homologous Pairs

Meiosis and Sexual Life Cycles

Meiosis and Life Cycles - 1

BIOLOGY - CLUTCH CH.13 - MEIOSIS.

Meiosis vs Mitosis. How many times did it go through prophase-metaphase-anaphase-telophase?

Sexual Cell Reproduction Chapter 17

CH 13 Meiosis & Sexual Life Cycles

Typical Life Cycle of Algae and Fungi. 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MGC New Life Christian Academy

Sexual Reproduction and Meiosis. Outline. Random?? fertilization. Chapter 13

CELL GROWTH AND DIVISION. Chapter 10

Biology Unit 6 Chromosomes and Mitosis

gametes Gametes somatic cells diploid (2n) haploid (n)

SEXUAL REPRODUCTION MEIOSIS SPERMATOGENESIS & OOGENESIS 2/6/2011. Asexual Reproduction:

Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR

MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Bellwork. Many organisms reproduce via asexual and sexual reproduction. How would we look if we reproduced mitotically?

Intitial Question: How can the mathematically impossible become the biologically possiblenamely,

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis & Sexual Reproduction

Mitosis. making identical copies of diploid cells

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction?

Meiosis & Sexual Reproduction

Cell Division (Meiosis)

Dr. Ramesh U4L3 Meiosis

Chapter 13 Meiosis and Sexual Life Cycles

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

Warm up. sexual life cycle. 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes?

Division of sex cells

CHAPTER 3 VOCABULARY (for now)

LECTURE 10A: MEIO S S

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall

Meiosis produces haploid gametes.

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

Meiosis * OpenStax. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0.

Meiosis. The sexy shuffling machine. LO: Describe the events of meiosis Explain how meiosis creates uniqueness Compare & contrast mitosis & meiosis

Heredity Variation Genetics Meiosis

Human Biology Chapter 13.4: Meiosis and Genetic Variation

Cellular Division. copyright cmassengale

11-4 Meiosis. Chromosome Number

Lesson Overview Meiosis

Sexual Reproduction ( Cell Division ) - Chromosome # s

Bell Ringer 02/02/15. Match the stages of mitosis to their descriptions and pictures.

Chapter 11: The Continuity of Life: Cellular Reproduction

Meiosis, Sexual Reproduction, & Genetic Variability

BIOLOGY. COLLEGE PHYSICS Chapter 11 MEIOSIS AND SEXUAL REPRODUCTION Chapter # Chapter Title PowerPoint Image Slideshow

9-4 Meiosis Meiosis. Slide 1 of 35

Review of Terms. Haploid cells (1n) with one copy of each chromosome. Diploid cells (2n) with two copies of each chromosome

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision.

Cell Division. Mitosis

8.8 Growth factors signal the cell cycle control system

Warm-Up Questions. 1. What are the stages of mitosis in order? 2. The diagram represents a cell process.

CHAPTER 6. Chromosomes and Meiosis

Chapter 13: Meiosis and Sexual Life Cycles

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words)

Cell division / Asexual reproduction

Biology Kevin Dees. Chapter 13 Meiosis and Sexual Life Cycles

Chapter 13 Meiosis and Sexual Life Cycles. Reproduction

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Unit 6 Test: The Cell Cycle

Sexual Reproduction Science 9- Mr. Klasz

Sperm & Eggs & Variation..OH MY!

Transcription:

Lecture 12 - Meiosis

In this lecture Types of reproduction Alternation of generations Homologous chromosomes and alleles Meiosis mechanism Sources of genetic variation

Meiosis and Mitosis Mitosis the production of somatic cells Produces two identical daughter cells Meiosis the production of gametes Produces two gametes with half the genetic information

The Birds and the Bees Meiosis produces cells for sexual reproduction In asexual reproduction, a single individual passes genes to its offspring without the fusion of gametes A clone an individual identical to its parent. Asexual reproduction produces clones. In sexual reproduction, two parents give rise to offspring that have unique combinations of genes inherited from the two parents

Some advanced organisms undergo asexual reproduction

Why do meiosis? Meiosis is needed to produce gametes for sexual reproduction At sexual maturity, the ovaries and testes produce haploid gametes Gametes are the only types of human cells produced by meiosis, rather than mitosis Meiosis results in one set of chromosomes in each gamete Fertilization fuses two gametes

Fertilization is the union of two 1n gametes (the sperm and the egg) The fertilized egg is called a zygote and is now 2n The zygote produces somatic cells by mitosis and develops into an adult

Alternative lifestyles Human cells do not continue dividing after becoming haploid However, some organisms do they alternate between haploid and diploid life cycles This is called alternation of generations Includes plants and some algae This life cycle includes both a diploid and haploid multicellular stage The diploid organism, called the sporophyte, makes haploid spores by meiosis

Alternation of Generations

Alternation of generations in ferns

Sets of chromosomes Human somatic cells have 23 pairs of chromosomes The two chromosomes in each pair are called homologous chromosomes, or homologs We have 46 homologs Chromosomes in a homologous pair are the same length and shape and carry genes controlling the same inherited characters

The diploid genome You have two copies of each gene We are diploid two copies of our genome in each somatic cell One from Mom, one from Dad, together called a homologous pair For humans, the diploid number is 46 (2n = 46) The haploid number is the number of unique chromosomes (n=23)

Homologous chromosomes Homologous chromosomes have the same general kind of gene along their length but the details of the gene on one chromosome may be slightly different than the corresponding gene on the other chromosome

Figure 13.4 2n 6 Key Maternal set of chromosomes (n 3) Paternal set of chromosomes (n 3) Sister chromatids of one duplicated chromosome Centromere Two nonsister chromatids in a homologous pair Pair of homologous chromosomes (one from each set)

Types of chromosomes Human females have a homologous pair of X chromosomes (XX) Human males have one X and one Y chromosome The remaining 22 pairs of chromosomes are called autosomes

Alleles For example, imagine a gene called Frogskin It encodes for what color your skin is There are many different variations, or alleles of this gene Frogskin A may code for green skin, Frogskin B for yellow skin, and Frogskin C for purple skin But, they all code for skin color. One gene with many possible alleles So, you have two copies of a gene, but they may or may not be different alleles

What s the deal with chromosomes and gametes? A gamete (sperm or egg) contains a single set of chromosomes, and is haploid (n) For humans, the haploid number is 23 (n = 23) Each set of 23 consists of 22 autosomes and a single sex chromosome In an unfertilized egg (ovum), the sex chromosome is X In a sperm cell, the sex chromosome may be either X or Y X sperm + X egg = female baby Y sperm + X egg = male baby Only a diploid cell can undergo meiosis

Meiosis? Like mitosis, meiosis is preceded by the replication of chromosomes Meiosis takes place in two sets of cell divisions, called meiosis I and meiosis II The two cell divisions result in four daughter cells, rather than the two daughter cells in mitosis Each daughter cell has only half as many chromosomes as the parent cell Has only one copy of each gene

Chromosome distribution in meiosis

Meiosis I Division in meiosis I occurs in four phases Prophase I Metaphase I Anaphase I Telophase I and cytokinesis

Prophase I Prophase I typically occupies more than 90% of the time required for meiosis Chromosomes begin to condense In synapsis, homologous chromosomes loosely pair up, aligned gene by gene

A closer look at synapsis May have originated as a DNA repair mechanism

Homologous Recombination In homologous recombination, nonsister chromatids but homologous chromosomes exchange DNA segments Each pair of chromosomes forms a tetrad, a group of four chromatids Each tetrad usually has one or more chiasmata, X-shaped regions where crossing over occurred Use this word to impress your guests at the dinner table

Metaphase I In metaphase I, tetrads line up at the metaphase plate, with one chromosome facing each pole Microtubules from one pole are attached to the kinetochore of one chromosome of each tetrad Microtubules from the other pole are attached to the kinetochore of the other chromosome

Anaphase I In anaphase I, pairs of homologous chromosomes separate One chromosome moves toward each pole, guided by the spindle apparatus Sister chromatids remain attached at the centromere and move as one unit toward the pole

Telophase I and Cytokinesis In the beginning of telophase I, each half of the cell has a haploid set of chromosomes; each chromosome still consists of two sister chromatids Cytokinesis usually occurs simultaneously, forming two haploid daughter cells

At the end of meiosis I You are left with two 2n cells. What gives?! Meiosis II takes place to further separate chromosomes No chromosome replication occurs between the end of meiosis I and the beginning of meiosis II because the chromosomes are already replicated Division in meiosis II also occurs in four phases Prophase II Metaphase II Anaphase II Telophase II and cytokinesis Meiosis II is very similar to mitosis

Prophase II In prophase II, a spindle apparatus forms In late prophase II, chromosomes (each still composed of two chromatids) move toward the metaphase plate

Metaphase II In metaphase II, the sister chromatids are arranged at the metaphase plate Because of crossing over in meiosis I, the two sister chromatids of each chromosome are no longer genetically identical The kinetochores of sister chromatids attach to microtubules extending from opposite poles

Anaphase II In anaphase II, the sister chromatids separate The sister chromatids of each chromosome now move as two newly individual chromosomes toward opposite poles

Telophase and Cytokinesis II In telophase II, the chromosomes arrive at opposite poles Nuclei form, and the chromosomes begin decondensing Cytokinesis separates the cytoplasm At the end of meiosis, there are four daughter cells, each with a haploid set of unreplicated chromosomes Each daughter cell is genetically distinct from the others and from the parent cell

Separating the chromosomes in meiosis Sister chromatid cohesion allows sister chromatids of a single chromosome to stay together through meiosis I Protein complexes called cohesins are responsible for this cohesion In mitosis, cohesins are cleaved at the end of metaphase In meiosis, cohesins are cleaved along the chromosome arms in anaphase I (separation of homologs) and at the centromeres in anaphase II (separation of sister chromatids)

Mitosis vs. Meiosis Three events are unique to meiosis, and all three occur in meiosis l Synapsis and crossing over in prophase I: Homologous chromosomes physically connect and exchange genetic information At the metaphase plate, there are paired homologous chromosomes (tetrads), instead of individual replicated chromosomes At anaphase I, it is homologous chromosomes, instead of sister chromatids, that separate

Mitosis vs. Meiosis The end results of mitosis and meiosis are very different Mitosis conserves the number of chromosome sets, producing cells that are genetically identical to the parent cell Meiosis reduces the number of chromosomes sets from two (diploid) to one (haploid), producing cells that differ genetically from each other and from the parent cell

Mitosis vs. Meiosis

Mitosis vs. Meiosis

Why do sexual reproduction at all? Mutations (changes in an organism s DNA) are the original source of genetic diversity Mutations create different versions of genes called alleles Reshuffling of alleles during sexual reproduction also produces genetic variation Sexual reproduction contributes to the genetic variation in a population, which originates from mutations

Why do sexual reproduction at all? The behavior of chromosomes during meiosis and fertilization is responsible for most of the variation that arises in each generation Three mechanisms contribute to genetic variation Independent assortment of chromosomes Homologous recombination Random fertilization

Independent assortment Homologous pairs of chromosomes orient randomly at metaphase I of meiosis In independent assortment, each pair of chromosomes sorts maternal and paternal homologues into daughter cells independently of the other pairs The number of combinations possible when chromosomes assort independently into gametes is 2 n, where n is the haploid number For humans (n = 23), there are more than 8 million (2 23 ) possible combinations of chromosomes

Figure 13.10-3 Possibility 1 Possibility 2 Two equally probable arrangements of chromosomes at metaphase I Metaphase II Daughter cells Combination 1 Combination 2 Combination 3 Combination 4

Homologous recombination Crossing over produces recombinant chromosomes, which combine DNA inherited from each parent It begins very early in prophase I, as homologous chromosomes pair up gene by gene Homologous portions of two nonsister chromatids trade places It contributes to genetic variation by combining DNA from two parents into a single chromosome

Random fertilization Random fertilization adds to genetic variation because any sperm can fuse with any ovum (unfertilized egg) The fusion of two gametes (each with 8.4 million possible chromosome combinations from independent assortment) produces a zygote with any of about 70 trillion diploid combinations

We are going to die, and that makes us the lucky ones. Most people are never going to die because they are never going to be born. The potential people who could have been here in my place but who will in fact never see the light of day outnumber the sand grains of Arabia. Certainly those unborn ghosts include greater poets than Keats, scientists greater than Newton. We know this because the set of possible people allowed by our DNA so massively exceeds the set of actual people. In the teeth of these stupefying odds it is you and I, in our ordinariness, that are here. --Richard Dawkins

Vocabulary Meiosis Homologous chromosomes Allele Autosomes Synapsis Chiasmata Independent assortment Homologous recombination

Practice questions What are the major differences between the events of meiosis and mitosis? What are the main contributors of genetic variation in meiosis, and how do they work? What is the point of sexual reproduction?

Extra Slides