Jorge Enoch Furquim Werneck Lima. Euzebio Medrado da Silva. Michael Strauch. Carsten Lorz. Hochschule Weihenstephan- Triesdorf

Similar documents
STREAM FLOW MODELING IN THE NACUNDAY RIVER BASIN (PARAGUAY, SOUTH AMERICA) USING SWAT MODEL. Sandra Mongelos and Manoj K. Jain

Evaluation of the SWAT Model Setup Process Through A Case Study in Roxo Catchment, Portugal

Introduction. Agronomy New Zealand 48, NZ-NSD use in SWAT

Journal of Natural & Environmental Sciences

Principles of soil water and heat transfer in JULES

Application of the SWAT hydrological model in a small, mountainous catchment in South Africa

GEOTECHNICAL LABORATORY

Supplementary Material: Crop & Pasture Science, 2013, 64(12),

Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements

Application of SWAT for the modelling of sediment yield at Pong reservoir, India

Exploring the uncertainty of soil water holding capacity information

Predicting the soil-water characteristics of mine soils

On the hydraulic properties of coarse-textured sediments at intermediate water contents

Modeling of Latosol development on geomorphic surfaces of the Brazilian Central Plateau: First results.

PURPOSE To develop a strategy for deriving a map of functional soil water characteristics based on easily obtainable land surface observations.

Under the guidance of Prof.C S P Ojha

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Soils. Source: Schroeder and Blum, 1992

Analyzing spatial and temporal variation of water balance components in La Vi catchment, Binh Dinh province, Vietnam

1. Water in Soils: Infiltration and Redistribution

SELECTING NEW Brachiaria FOR BRAZILIAN PASTURES. 2 CNPq fellow. Abstract

Infiltration Characteristics of Granitic Residual Soil of Various Weathering Grades

Analysis of the Impacts of Spatial Input Data Quality on the Determination of Runoff and Suspended Sediments in the Imha Watershed Using Swat Model

Setting up SWAT for the Upper Amazon

Trace metals geochemical background in soil in the Suape Port and Industrial Complex, Pernambuco Brazil

Spatial modeling of pesticide emissions to groundwater and surface water in the Belgian context

GEOL 474/674 Practice Exam #1 Fall This exam counts 20% of your grade for this course; your instructions are as follows:

Estimating soil specific surface area using the summation of the number of spherical particles and geometric mean particle-size diameter

Modeling Upland and Channel Sources of Sediment in the Le Sueur River Watershed, Minnesota

Developing New Electrical Conductivity Technique for Measuring Soil Bulk Density

On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions

CHARACTERIZATION OF COFFEE AGROECOSYSTEMS OF THE STATE OF MINAS GERAIS IN BRAZIL

HYDROPEDOLOGY AND WATER RESOURCES MANAGEMENT: CASE STUDY OF AL-KHOUD RECHARGE DAM- OMAN

THE EFFECTS OF ROCK FRAGMENT SHAPES AND POSITIONS ON MODELED HYDRAULIC CONDUCTIVITIES OF STONY SOILS

In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique

21 st century hydrological modelling for optimizing ancient water harvesting techniques

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and

Report of post doc project

Procedure for Determining Near-Surface Pollution Sensitivity

Calibration of Diviner capacitance probe in two soils of Piaui State, Brazil

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

On the influence of coarse fragments on soil water retention

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Using Ion-Selective Electrodes to Map Soil Properties

It is important to recognize two distinct but overlapping uses of the term "clay":

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007

Development and testing of improved physically based streambank erosion and sediment routing routines in SWAT

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

APPENDIX C. Supplemental Information on Aquifer Properties

Roger Andy Gaines, Research Civil Engineer, PhD, P.E.

10/27/2014. Surface Processes. Surface Processes. Surface Processes. Surface Processes. Surface Processes

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Filling Pond Head vs Volume Functions

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

Chapter 1 Introduction

Comparison of Flow Calibration Using NEXRAD and Surface Rain Gauge Data in ArcSWAT

Weathering is the process that breaks down rock and other substances at Earth s surface

The future of the Lowland Belizean Savannas?.

CONCEPTS Conservational Channel Evolution and Pollutant Transport System

Hydrological modeling and flood simulation of the Fuji River basin in Japan

Sediment Capture in Pervious Concrete Pavement tsystems: Effects on Hydrological Performance and Suspended Solids

Estimating soil water holding capacity for irrigation design in the SA sugar industry

Coupling a basin erosion and river sediment transport model into a large scale hydrological model

Jose Brito, Cenor, Portugal

Groundwater. (x 1000 km 3 /y) Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Unsaturated Flow (brief lecture)

Field evidence of a negative correlation between saturated hydraulic conductivity and soil carbon in a sandy soil

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

Challenges in Calibrating a Large Watershed Model with Varying Hydrogeologic Conditions

Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro

Agry 465 Exam October 18, 2006 (100 points) (9 pages)

' International Institute for Land Reclamation and Improvement. 2 Groundwater Investigations. N.A. de Ridder'? 2.1 Introduction. 2.

Modelling Runoff with Satellite Data. Nyandwaro Gilbert Nyageikaro Patrick Willems Joel Kibiiy

1.5 Permeability Tests

A Tool for Estimating Soil Water Available for Plants Using the 1:1,000,000 Scale Soil Geographical Data Base of Europe

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage

Weathering, Soil, and Mass Movements

Monday, October 15 th Grab a textbook! Objective: We will explain the formation of different soils and classify soils according to particle size.

This is start of the single grain view

Particle Size Determination of Lake Sediment and an Analysis of Organic Fractions of 14 Samples from Elk Lake, including a Sample from the Channel.

Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL

Although not essential, a good quality hand lens is a valuable addition to your field kit.

Spectral data fusion for quantitative assessment of soils from Brazil

STANDARD OPERATING PROCEDURE NO. 70 DENSITY AND VOLUMETRIC WATER CONTENT BY THE SAND REPLACEMENT METHOD

Improved physically based approaches for Channel Erosion Modeling in SWAT. Balaji Narasimhan, P. M. Allen, J. G. Arnold, and R.

Simulation of hydrologic and water quality processes in watershed systems using linked SWAT-MODFLOW-RT3D model

Effectiveness of Gabions Dams on Sediment Retention: A Case Study

Open Channel Flow Part 2. Ch 10 Young, notes, handouts

Be sure to show all calculations so that you can receive partial credit for your work!

River bank erosion risk potential with regards to soil erodibility

Spatial resolution of soil data and channel erosion effects on SWAT model predictions of flow and sediment

The relationship between catchment characteristics and the parameters of a conceptual runoff model: a study in the south of Sweden

High nutrient and sediment loads of the temporary river El Albujón related to human induced soil erosion (SE-Spain, Murcia)

SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE BOULDERS IN GLACIAL DEPOSITS

The process of consolidation and settlement

Approaches to calibrate in-situ capacitance soil moisture sensors and some of their implications

Evaluation of small watersheds inflowing Lake Shinji against the water environment

New soil physical properties implemented in the Unified Model

Modelling riverbank retreat by combining reach-scale hydraulic models with bank-scale erosion and stability analyses

Transcription:

Jorge Enoch Furquim Werneck Lima Euzebio Medrado da Silva Michael Strauch Carsten Lorz Hochschule Weihenstephan- Triesdorf

SWAT is a physically-based hydrological model spatially distributed parameters Soil parameters (input data + calibration) lack of profound data in tropics (e.g. soil hydraulic properties) pedotransfer functions as work-around, but hydrological behavior of tropical soils is different (e.g. pseudosand particles)

This study aims to present a reference soil database for applying SWAT in catchments of the Brazilian Savanna, by providing initial parameter values and their ranges of variation.

Upper Jardim Experimental River Basin (~105 km²)

The Cerrado Biome (Brazilian savanna region) Cerrado s.s. Mata de galeria Campo Large scale cropping (soybean, corn)

Upper Jardim Experimental River Basin (data collection) Red Latosols 22 points Red-Yellow Latosols 19 Cambisols 10 Gleysols 2 Plinthosols 2 Yellow Latosol 1 Quartzarenic Neosols - 12 (DF) Core and disturbed samples 15 and 60 cm Water table level - Ks

Upper Jardim Experimental River Basin (data collection) Soil information Method Reference Soil texture Sieving and pipetting (3x) Embrapa (1997) Bulk density Volumetric ring (3x) Embrapa (1997) Saturated hydraulic conductivity Soil water retention curve (SWRC) Constant head permeameter (6x); Slug test Klute (1965) Hvorslev (1951) Centrifuge (3x) Reatto et al. (2008) Available water content SWRC: 10 to 1,500 kpa Reichardt (1988) Organic matter Oxidation (3x) Embrapa (1997) Soil erodibility Regional PTF Lima et al. (2007)

Conceptual model developed for representing Cerrado soils vertically in SWAT

Average values of the parameters per layer and soil class. SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 USLE_K1 Red Latosols LV 3 A 300.00 300.00 0.90 0.12 612.20 1.67 53.93 28.37 12.94 0.00 0.018 Red-Yellow Latosols LVA 3 A 300.00 300.00 0.94 0.11 1112.85 1.69 57.36 24.61 18.03 0.00 0.019 Yellow Latosol LA 3 A 300.00 300.00 0.86 0.15 2602.59 1.65 58.81 21.75 19.44 0.00 0.017 Quartzarenic Neosols RQ 3 A 300.00 300.00 1.30 0.08 281.26 0.60 30.10 9.65 60.25 0.00 0.031 Cambisols CX 2 C 300.00 300.00 0.99 0.11 874.33 1.58 49.84 32.95 17.20 0.00 0.023 Gleysols GX 2 D 300.00 300.00 0.87 0.13 494.44 2.56 51.59 28.54 19.86 0.00 0.021 Plinthosols FX 2 D 300.00 300.00 1.09 0.14 553.78 1.14 37.97 21.91 40.13 0.00 0.030 Rock Outcrop AFLR 1 D 300.00 300.00 2.62 0.01 0.01 0.01 0.00 0.00 0.01 99.99 0.001 SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z2 SOL_BD2 SOL_AWC2 SOL_K2 SOL_CBN2 CLAY2 SILT2 SAND2 ROCK2 USLE_K2 Red Latosols LV 3 A 1000.00 1000.00 0.94 0.14 461.07 1.01 66.28 22.93 10.79 0.00 0.015 Red-Yellow Latosols LVA 3 A 1000.00 1000.00 0.96 0.13 401.26 0.95 64.37 20.54 15.09 0.00 0.017 Yellow Latosol LA 3 A 1000.00 1000.00 0.94 0.12 505.50 0.87 62.28 19.89 17.83 0.00 0.015 Quartzarenic Neosols RQ 3 A 1000.00 1000.00 1.38 0.08 102.85 0.40 34.35 9.58 42.90 0.00 0.030 Cambisols CX 2 C 1000.00 1000.00 1.00 0.16 262.52 0.72 49.16 34.31 16.53 0.00 0.023 Gleysols GX 2 D 1000.00 1000.00 0.87 0.13 494.44 2.56 51.59 28.54 19.86 0.00 0.021 Plinthosols FX 2 D 1000.00 1000.00 1.09 0.14 553.78 1.14 37.97 21.91 40.13 0.00 0.030 SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z3 SOL_BD3 SOL_AWC3 SOL_K3 SOL_CBN3 CLAY3 SILT3 SAND3 ROCK3 USLE_K3 Red Latosols LV 3 A 2000.00 3500.00 0.94 0.14 142.32 1.01 66.28 22.93 10.79 0.00 0.015 Red-Yellow Latosols LVA 3 A 2000.00 3500.00 0.96 0.13 230.05 0.95 64.37 20.54 15.09 0.00 0.017 Yellow Latosol LA 3 A 2000.00 3500.00 0.94 0.12 186.92 0.87 62.28 19.89 17.83 0.00 0.015 Quartzarenic Neosols RQ 3 A 2000.00 3500.00 1.38 0.08 102.85 0.40 34.35 9.58 42.90 0.00 0.030

Minimum values of the parameters per layer and soil class. SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 USLE_K1 Red Latosols LV 3 A 300.00 300.00 0.83 0.10 34.21 0.96 40.97 18.57 5.92 0.00 0.014 Red-Yellow Latosols LVA 3 A 300.00 300.00 0.83 0.07 342.36 0.71 40.70 9.22 4.98 0.00 0.014 Yellow Latosol LA 3 A 300.00 300.00 0.83 0.13 2602.59 1.65 58.81 21.75 19.44 0.00 0.017 Quartzarenic Neosols RQ 3 A 300.00 300.00 1.14 0.06 75.78 0.40 17.65 3.44 39.44 0.00 0.027 Cambisols CX 2 C 300.00 300.00 0.88 0.09 342.32 0.92 35.12 23.83 10.40 0.00 0.015 Gleysols GX 2 D 300.00 300.00 0.87 0.13 494.44 2.56 51.59 28.54 19.86 0.00 0.021 Plinthosols FX 2 D 300.00 300.00 1.00 0.14 8.15 0.88 35.99 15.98 32.23 0.00 0.029 Rock Outcrop AFLR 1 D 300.00 300.00 2.62 0.01 0.01 0.01 0.00 0.00 0.01 99.99 0.001 SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z2 SOL_BD2 SOL_AWC2 SOL_K2 SOL_CBN2 CLAY2 SILT2 SAND2 ROCK2 USLE_K2 Red Latosols LV 3 A 1000.00 1000.00 0.88 0.08 177.48 0.65 57.11 13.86 4.93 0.00 0.014 Red-Yellow Latosols LVA 3 A 1000.00 1000.00 0.86 0.09 49.34 0.65 47.31 7.61 3.84 0.00 0.014 Yellow Latosol LA 3 A 1000.00 1000.00 0.94 0.12 505.50 0.87 62.28 19.89 17.83 0.00 0.015 Quartzarenic Neosols RQ 3 A 1000.00 1000.00 1.24 0.07 13.05 0.31 18.63 2.79 34.02 0.00 0.026 Cambisols CX 2 C 1000.00 1000.00 0.84 0.13 123.03 0.15 35.20 22.67 11.10 0.00 0.015 Gleysols GX 2 D 1000.00 1000.00 0.87 0.13 494.44 2.56 51.59 28.54 19.86 0.00 0.021 Plinthosols FX 2 D 1000.00 1000.00 1.00 0.14 8.15 0.88 35.99 15.98 32.23 0.00 0.029 SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z3 SOL_BD3 SOL_AWC3 SOL_K3 SOL_CBN3 CLAY3 SILT3 SAND3 ROCK3 USLE_K3 Red Latosols LV 3 A 2000.00 3500.00 0.88 0.08 0.34 0.65 57.11 13.86 4.93 0.00 0.014 Red-Yellow Latosols LVA 3 A 2000.00 3500.00 0.86 0.09 0.60 0.65 47.31 7.61 3.84 0.00 0.014 Yellow Latosol LA 3 A 2000.00 3500.00 0.94 0.12 186.92 0.87 62.28 19.89 17.83 0.00 0.015 Quartzarenic Neosols RQ 3 A 2000.00 3500.00 1.24 0.07 13.05 0.31 18.63 2.79 34.02 0.00 0.026

Maximum values of the parameters per layer and soil class. SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 USLE_K1 Red Latosols LV 3 A 300.00 300.00 1.19 0.15 1310.33 2.65 70.79 37.80 37.78 0.00 0.028 Red-Yellow Latosols LVA 3 A 300.00 300.00 1.16 0.16 2345.27 2.50 78.26 38.15 47.19 0.00 0.029 Yellow Latosol LA 3 A 300.00 300.00 0.86 0.15 2602.59 1.65 58.81 21.75 19.44 0.00 0.017 Quartzarenic Neosols RQ 3 A 300.00 300.00 1.40 0.09 763.70 0.96 42.78 23.03 78.90 0.00 0.033 Cambisols CX 2 C 300.00 300.00 1.14 0.13 1436.40 1.77 64.61 51.72 29.66 0.00 0.031 Gleysols GX 2 D 300.00 300.00 0.87 0.13 494.44 2.56 51.59 28.54 19.86 0.00 0.021 Plinthosols FX 2 D 300.00 300.00 1.18 0.15 1099.40 1.41 39.95 27.83 48.03 0.00 0.031 Rock Outcrop AFLR 1 D 300.00 300.00 2.62 0.01 0.01 0.01 0.00 0.00 0.01 99.99 0.001 SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z2 SOL_BD2 SOL_AWC2 SOL_K2 SOL_CBN2 CLAY2 SILT2 SAND2 ROCK2 USLE_K2 Red Latosols LV 3 A 1000.00 1000.00 1.04 0.19 1324.30 1.45 75.54 34.21 25.83 0.00 0.018 Red-Yellow Latosols LVA 3 A 1000.00 1000.00 1.14 0.18 839.63 1.31 85.16 32.58 43.70 0.00 0.025 Yellow Latosol LA 3 A 1000.00 1000.00 0.94 0.12 505.50 0.87 62.28 19.89 17.83 0.00 0.015 Quartzarenic Neosols RQ 3 A 1000.00 1000.00 1.50 0.09 235.70 0.52 44.51 23.56 77.86 0.00 0.032 Cambisols CX 2 C 1000.00 1000.00 1.19 0.20 430.54 1.16 64.62 53.69 30.96 0.00 0.031 Gleysols GX 2 D 1000.00 1000.00 0.87 0.13 494.44 2.56 51.59 28.54 19.86 0.00 0.021 Plinthosols FX 2 D 1000.00 1000.00 1.18 0.15 1099.40 1.41 39.95 27.83 48.03 0.00 0.031 SNAM NLAYERS HYDGRP SOL_ZMX SOL_Z3 SOL_BD3 SOL_AWC3 SOL_K3 SOL_CBN3 CLAY3 SILT3 SAND3 ROCK3 USLE_K3 Red Latosols LV 3 A 1000.00 3500.00 1.04 0.19 1000.00 1.45 75.54 34.21 25.83 0.00 0.018 Red-Yellow Latosols LVA 3 A 1000.00 3500.00 1.14 0.18 1000.00 1.31 85.16 32.58 43.70 0.00 0.025 Yellow Latosol LA 3 A 1000.00 3500.00 0.94 0.12 186.92 0.87 62.28 19.89 17.83 0.00 0.015 Quartzarenic Neosols RQ 3 A 1000.00 3500.00 1.50 0.09 235.70 0.52 44.51 23.56 77.86 0.00 0.032

The study provides reference values for defining layerspecific soil parameters in the Cerrado biome We also present physically meaningful parameter ranges, which can be used for model calibration. increasing applicability and reliability of the SWAT model when used in the Cerrado biome might be useful as blueprint for further studies in other regions might contribute to global SWAT soil database

Jorge Enoch Furquim Werneck Lima jorge.werneck-lima@embrapa.br Euzebio Medrado da Silva euzebio.medrado@gmail.com Michael Strauch michael.strauch@ufz.de Carsten Lorz carsten.lorz@hswt.de Hochschule Weihenstephan- Triesdorf