Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Similar documents
The Photoelectric Effect

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Quantum Mechanics & Atomic Structure (Chapter 11)

CHAPTER 8 The Quantum Theory of Motion

Chapter 6 - Electronic Structure of Atoms

Chapter 12: Phenomena

Probability and Normalization

Chapter 6 Electronic structure of atoms

Ch. 1: Atoms: The Quantum World

UNIT 1: STRUCTURE AND PROPERTIES QUANTUM MECHANICS. Development of the Modern Atomic Theory

Recall the Goal. What IS the structure of an atom? What are the properties of atoms?

I. Multiple Choice Questions (Type-I)

Quantum Mechanics of Atoms

Atomic Structure and the Periodic Table

Topic 12: Quantum numbers. Heisenberg, Schrodinger, Quantum Theory, Quantum numbers, Practice

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz)

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s.

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door.

Degeneracy & in particular to Hydrogen atom

Electronic Structure of Atoms. Chapter 6

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

PHYS 3313 Section 001 Lecture # 22

Chapter 6 Electronic Structure of Atoms

Chapter 6: Electronic Structure of Atoms

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

Semiconductor Physics and Devices

Electronic structure of atoms

ONE AND MANY ELECTRON ATOMS Chapter 15

CHAPTER 28 Quantum Mechanics of Atoms Units

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons.

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4. Arrangement of Electrons in Atoms

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

Starter # (1) Why was Rutherford s model not good enough and need to be modified by scientists?

Basic Quantum Mechanics

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Energy and the Quantum Theory

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Line spectrum (contd.) Bohr s Planetary Atom

Structure of the atom

Chapter 6. of Atoms. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 6. of Atoms. Waves. Waves 1/15/2013

--THE QUANTUM MECHANICAL MODEL

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

Electrons and Periodic Behavior. Cartoon courtesy of NearingZero.net

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

CHAPTER STRUCTURE OF ATOM

MODULE 213 BASIC INORGANIC CHEMISTRY UNIT 1 ATOMIC STRUCTURE AND BONDING II

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

CHAPTER 6 Quantum Mechanics II

H!!!! = E! Lecture 7 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7. Lecture 7 - Introduction

8 Wavefunctions - Schrödinger s Equation

Chapter 6. Electronic Structure of Atoms

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

THE NATURE OF THE ATOM. alpha particle source

Chapter 7 The Quantum-Mechanical Model of the Atom

Wave Properties of Particles Louis debroglie:

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師

Wave properties of matter & Quantum mechanics I. Chapter 5

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 6 Quantum Mechanics II

CHEM 103 Spectroscopy and the Quantum Mechanical Model

Physics 43 Exam 2 Spring 2018

Atomic Structure and Atomic Spectra

Chapter 2. Atomic Structure. Inorganic Chemistry1 CBNU T.-S.You

Chapter 4. Development of a New Model

Applied Statistical Mechanics Lecture Note - 3 Quantum Mechanics Applications and Atomic Structures

Wave nature of particles

Chapter 2. Atomic Structure and Periodicity

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation

AP Chemistry. Chapter 6 Electronic Structure of Atoms

Atomic Structure Part II Electrons in Atoms

Classical Theory of the Atom

The Quantum Mechanical Atom

Key Developments Leading to Quantum Mechanical Model of the Atom

5.111 Lecture Summary #6

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Electrons hold the key to understanding why substances behave as they do. When atoms react it is their outer pars, their electrons, that interact.

Chapter 6. Quantum Theory of the Hydrogen Atom

absorbed amplitude energy frequency wavelength 7.1 The Nature of Light electrons described by Quantum Numbers Core Electrons Valence Electrons

Quantum Mechanics. Watkins, Phys 365,

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011

The Schrödinger Equation

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall.

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

Chapter 4 Section 2 Notes

Lecture 21 Matter acts like waves!

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

Brief review of Quantum Mechanics (QM)

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

Transcription:

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you cannot simultaneously know its momentum exactly. If you try to specify/measure the exact momentum of a particle, you cannot simultaneously know its position exactly. Notice that this is very different from the macroscopic world (like throwing a football around). In the latter case, you CAN specify both the position and the momentum very well. We call the position as a function of time the TRAJECTORY

Introduction to Quantum Mechanics A series of experiments at the beginning of the 0th century taught us that light can behave both as particle (photoelectric effect) and wave (two slit diffraction) Louis debroglie postulated that any particle of mass m travelling with velocity v (i.e. momentum p m.v) would have a wavelength given by: λ h p debroglie wavelength debroglie was shown to be correct by the Davisson Germer experiment which showed that a beam of electrons were diffracted (wave behavior) through a nickel crystal.

Schrodinger s equation In 196, Erwin Schrodinger describes how particles behave on a microscopic scale (Quantum Mechanics) H Ψ EΨ Hamiltonian operator wavefunction wavefunction energy One particular case (result) in Quantum Mechanics is the behavior of the electron in the hydrogen atom.

Particle (electron) in a box (one dimensional) This is NOT the problem of the Hydrogen atom or the nucleus but will allow us to UNDERSTAND Quantum Mechanics and the Schrodinger equation a little. V V0 V 1. Electron is forced to be inside box. It cannot be outside (Thick repulsive walls). m. The particle experiences no force acting on it inside the box (until it reaches a wall). x x0 xl 3. Can the electron simply move around the box (Follow a trajectory)? NO! Why not?

H Ψ EΨ ( T ˆ + V ˆ ) Ψ EΨ T and V are the kinetic energy operator and the potential energy operator respectively. However, inside the box V(x) 0 Tˆ m d dx m d Ψ dx EΨ Rearranging, d Ψ dx me Ψ Note that m,e, and hbar are all constants. This is called a second order ordinary differential equation. We guess the solution, Ψ( x ) Asin( kx)

d dx d Ψ dx d dx Asin( kx) d dx d dx Ak cos( kx) Asin( kx) Ψ d dx ( Ak cos( kx) ) Ak sin( kx) k ( Asin( kx)) k Ψ Notice that what we wanted was: d Ψ me Ψ dx By inspection, our trial solution works so k me Ψ( x ) Asin( kx) and E k m But what are the constants A and k?

The role of boundary conditions At the walls of the box, the wavefunction must be zero. Why? So, Ψ( x 0) Asin(0) 0 Ψ( x L) Asin( kl) sin( kl) 0 nπ k L where n 1,,3,... nπ Ψ( x) Asin( x) L What is the value of A? 0 Consider the fact that the particle MUST be in the box. That is to say, the probability of finding the particle in the box is 100%.

L 0 A Total probability of finding the Particle in the box A nπ Ψ( x) Asin( x) L L 0 sin sin nπ ( x) dx L nπ ( x) dx L 1 1 L Ψ 0 ( x) dx 1 L 0 sin nπ 1 ( L x) dx A Value of integral L/ L 1 A So, A L nπ Ψ( x) sin( x) L L E n h 8mL n1,,3,

Schrodinger solution for Particle in a 1D box What wave can exist inside the box? a) What is the shape (functional form) of Ψ(x)? b) What is the value of Ψ at the walls? c) What is the value of Ψ at the middle of the box. Is this the only possible solution?

Schrodinger solution for Particle in a 1D box Other solutions for the particle in the box How does the energy of the second solution compare with the energy of the first solution? The lowest energy state is called the ground state The first state higher in energy that the ground state is called the first excited state. IDEA: The general solution is an integer number of half sine waves.

Schrodinger solution for Particle in a 1D box Probability for finding the electron at a given location is Ψ(x) Ψ(x) is the amplitude of the wavefunction at position x. The larger Ψ is the larger the probability of finding the particle at that location. A node is a position (aside from the walls) where the wavefunction is equal to zero. The larger the number of nodes, the higher the energy.

Questions to consider Where is it most likely to find the electron when the electron is in the lowest energy state? What is the probability for finding the electron in the middle of the box when the electron is in the first excited state?

Particle in a box This is the lowest energy state (ground state) ψ ( x) L nπx sin( ) L E n n h 8mL 0 x L One quantum number, n, is necessary to specify the state of the electron Where is ψ(x) maximum? Probability of finding the electron ψ(x) Is the electron at the middle of the box?

Particle in the first excited state What is the probability of finding the electron at xl/ (middle of the box)? Probability of finding the electron ψ(x) 0 L x Where is ψ(x) maximum? 0 L x

Things to remember In solving Schrodinger s equation HψEψ you get two pieces of information: ψ the wavefunction this is KEY as from it you can calculate not only the probability but any other observable quantity (e.g. dipole moment, etc.) E n -- the energy states (also called eigenvalues)

Particle on a ring p r Particle on ring is simply the particle in a box wrapped on itself.

H Ψ EΨ The hydrogen atom and Schrodinger s equation In the hydrogen atom the electron is attracted by the nucleus. The potential depends on the distance between the electron and the nucleus. V ( r) ( Ze)( e) r Where (Ze) is the charge of the nucleus and (e) is the charge on the electron. The distance between the mucleus and the electron is r. You can see that this potential depends on only the distance between the nucleus and the electron and not the coordinates (x,y,z). Such a central potential suggests we work with the SPHERICAL POLAR coordinate system (r,θ,φ) rather than the Cartesian (x,y,z). Moreover the solution to the Schrodinger equation is SEPARABLE that is: Ψ( r, θ, φ) R( r) Θ( θ ) Φ( φ)

When we solve Schrodinger s equation we get : a) Eigenenergies b) Wavefunctions Eigenenergies E n Z n 4 me 18 Z.178 10 J 8ε 0 h n n1,,3,4, and is called the PRINCIPAL QUANTUM NUMBER Notice that for hydrogen (Z1) or a hydrogen-like atom (only one electron) the eigenenergies depend only on the principal quantum number n. Since n is integer, the energy levels are quantized. This is the same equation as determined by Balmer et al and later Niels Bohr.

The hydrogen atom The hydrogen atom and Schrodinger s equation Four quantum numbers are needed to describe the state of the electron 1. n : principal quantum number ; n 1,,3,4,. l : azimuthal quantum number ; l 0,1,, (n-1) 3. m l : magnetic quantum number ; m l -l, (-l+1), (-l+) 0,1,, l Orbital : The region in an atom within which an electron can be found Orbital : a valid set of the quantum numbers (n,l,m l ) Shell : A group of orbitals with the same principal quantum #, n Total number of orbitals in a shell : n Notice that m l has (l +1) possible values

Nodes and energy in the hydrogen atom Hydrogen wavefunctions in more detail σ Zr a 0 Scaled distance r ε 0h a0 5.9 10 π me 11 m Bohr orbit Lowest energy level: n1, l 0 (s), m l 0 ; 1 s orbital ψ 1s 3/ 1 Z π e a0 σ

Now look at the s wavefunction ψ 3/ 1 Z σ / ( σ ) 4 π s e a0 When is the wavefunction (and therefore the probability) zero? How does the wavefunction fall off as compared to the 1s wavefunction?

The Physical Meaning of a wave function From the uncertainty principle we know there is no way to describe the detailed motion of the electron in the atom. (In fact, is it even correct to think of the motion of an electron in the atom as this implies trajectories?) The square of the function evaluated at a particular point in space indicates the probability of finding the electron at that point. What is the probability of finding the electron at some distance from the nucleus? Radial Probability distribution

Pauli exclusion principle Statement #1 : No more than two electrons can be assigned to any orbital, and they must have opposite spins. Statement # : No two electrons in the same atom can have the same set of four quantum numbers n,l, m l, and m s.

Hund s Rule (the bus rule) Electrons pair only after each orbital in a sub-shell is occupied by a single electron. Why? Nobel gas notation: Write the electron configuration using the preceding noble gas to represent filled subshells. Example: Mg : 1s s p 6 3s [Ne]3s

The harmonic oscillator The classical harmonic oscillator: 1 V ( x) kx dv F kx dx What is form of the potential? k is the spring constant k is the curvature of the potential The mass can have zero kinetic energy (be at rest at the equilibrium position) The mass can have any energy (classical)

The harmonic oscillator The quantum harmonic oscillator: 1 V ( x) kx dv F kx dx Solving Schrodinger s equation with this potential yields (as always) ψ and eigenenergies. E n 1 ( n + ) ω n 0,1,,3, ω k m The potential is a parabola The mass cannot have zero kinetic energy it must have at least the zero point energy The mass cannot have any energy the energy levels are quantized

What is the consequence of a square well not being inifinite? Recall, E E λ 1 mv h p The finite square well p m V V0 m x x0 xl V VV 0 VV 0 V0 a) Consider a particle with energy, E > V 0 approaching from the left. What is its KE? b) What happens to the particle when it is over the finite well? c) Imagine a particle of zero kinetic energy incident from the left. What can we say? d) Imagine a particle with an energy E < V 0 that is in the well. What can we say?

Quantum tunneling and alpha decay E VV 1 VV 0 V0

Bottom line A potential is a box Boxes hold things, in this case particles When microscopic particles are bounded they behave as waves The boundaries ( walls ) of the box define the discrete energy levels ( quantization ) Solution of Schrodinger s equation gives not only the energy states ( eigenenergies ) but the wavefunction The wavefunction is useful not only for calculating the probability of where the particle exists but ANY observable quantity. With this background in mind, let s turn to the nuclear case.