HICUM Parameter Extraction Methodology for a Single Transistor Geometry

Similar documents
2 nd International HICUM user s meeting

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

A new transit time extraction algorithm based on matrix deembedding techniques

HICUM release status and development update L2 and L0

Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34

About Modeling the Reverse Early Effect in HICUM Level 0

Non-standard geometry scaling effects

Accurate transit time determination and. transfer current parameter extraction

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements

Working Group Bipolar (Tr..)

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration

Status of HICUM/L2 Model

Investigation of New Bipolar Geometry Scaling Laws

Device Physics: The Bipolar Transistor

MEXTRAM (level 504) the Philips model for bipolar transistors

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

HICUM/L2 version 2.2: Summary of extensions and changes

Regional Approach Methods for SiGe HBT compact modeling

HICUM/L2 version 2.21: Release Notes

Thermal Capacitance cth its Determination and Influence on Transistor and Circuit Performance

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

Bipolar Junction Transistor (BJT) - Introduction

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions

1 Introduction -1- C continuous (smooth) modeling

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Chapter 2. Small-Signal Model Parameter Extraction Method

Bipolar junction transistors

The Devices. Jan M. Rabaey

The Mextram Bipolar Transistor Model

figure shows a pnp transistor biased to operate in the active mode

TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE

BEOL-investigation on selfheating and SOA of SiGe HBT

The Mextram Bipolar Transistor Model

Digital Integrated CircuitDesign

Semiconductor Physics Problems 2015

Semiconductor Device Simulation

Chapter 13 Small-Signal Modeling and Linear Amplification

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

6.012 Electronic Devices and Circuits

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Modelling the Vertical PNP - Transistor using ICCAP and VBIC

Circle the one best answer for each question. Five points per question.

Biasing the CE Amplifier

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

VBIC Fundamentals. Colin McAndrew. Motorola, Inc East Elliot Rd. MD EL-701 Tempe, AZ USA 1 VBIC

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

Spring Semester 2012 Final Exam

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

EKV MOS Transistor Modelling & RF Application

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

ECE-305: Spring 2018 Final Exam Review

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

Didier CELI, 22 nd Bipolar Arbeitskreis, Würzburg, October 2009

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Type Marking Pin Configuration Package BCX42 DKs 1 = B 2 = E 3 = C SOT23. Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V CEO

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

13. Bipolar transistors

BCW60, BCX70. NPN Silicon AF Transistors. For AF input stages and driver applications High current gain Low collector-emitter saturation voltage

Appendix 1: List of symbols

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27.

EE105 - Fall 2006 Microelectronic Devices and Circuits

6.012 Electronic Devices and Circuits Spring 2005

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Electronic Circuits Summary

BCW61..., BCX71... PNP Silicon AF Transistors. For AF input stages and driver applications High current gain Low collector-emitter saturation voltage

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Refinements to Incremental Transistor Model

Tunnel Diodes (Esaki Diode)

Investigation of Ge content in the BC transition region with respect to transit frequency

THERMAL EFFECTS ON ANALOG INTEGRATED CIRCUIT DESIGN MD MAHBUB HOSSAIN. Presented to the Faculty of the Graduate School of

DATA SHEET. BFG31 PNP 5 GHz wideband transistor DISCRETE SEMICONDUCTORS Sep 12

Memories Bipolar Transistors

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

Extraction of the substrate complex for HBT/BJT transistors

MICROELECTRONIC CIRCUIT DESIGN Second Edition

DISCRETE SEMICONDUCTORS DATA SHEET. BLW80 UHF power transistor

Recitation 17: BJT-Basic Operation in FAR

BJT - Mode of Operations

Semiconductor Physics fall 2012 problems

DISCRETE SEMICONDUCTORS DATA SHEET. BFQ149 PNP 5 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14

Metal-oxide-semiconductor field effect transistors (2 lectures)

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1

Model derivation of Mextram 504

6.012 Electronic Devices and Circuits

Lateral SiC bipolar junction transistors for high current IC driver applications

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

Chapter 2 - DC Biasing - BJTs

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

Junction Bipolar Transistor. Characteristics Models Datasheet

LOW TEMPERATURE MODELING OF I V CHARACTERISTICS AND RF SMALL SIGNAL PARAMETERS OF SIGE HBTS

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

Transcription:

HICUM Parameter Extraction Methodology for a Single Transistor Geometry D. Berger, D. Céli, M. Schröter 2, M. Malorny 2, T. Zimmer 3, B. Ardouin 3 STMicroelectronics,, France 2 Chair for Electron Devices and Integrated Circuits, Dresden, Germany 3 Laboratoire de Microélectronique IXL, Bordeaux, France BCTM 2002, Monterey, CA

Goals Describe step by step the extraction procedure of main HICUM parameters for a single transistor geometry. Illustrate each step by the required characteristics and intermediate results. Present comparison between simulation and measurements of DC and AC characteristics of the transistor. Validate the methodology on different devices from various ST BiCMOS processes. /7

HICUM s features Parasitic PNP Substrate network Q js I jsc S I TS su Q su S Intrinsic transistor Weak avalanche C CX C Q BCx Q BCx I jbcx QdS C rbi I jbci Q jci B B* B I jbep Q jep Bx bi Q jei Q dc Q de I AVL I T I BEt I jbei Q Eox E E Self-heating Peripheral & extrinsic transistor Tunnelling E P th T C th AC crowding 2/7

Measurements Performed on HF structures, temperature regulated at 27 o C, using GSG- HF probes to avoid oscillation problems at DC operation. Depletion capacitances from Cold S parameters (HP850XF). DC measurements on HP442B and consisting of I B and I C versus V CB at constant V BE for the avalanche parameters extraction. Forward Gummel plot at positive and negative V BC for the collector, base and substrate parameters and the emitter resistance extraction. Output characteristics at fixed I B for the collector resistance determination. The transit time is deduced of the f T (I C,V BC ) curves obtained from S parameters in the range 0.-00 GHz. Transistors has been measured from different ST BiCMOS processes. 3/7

Extraction flow at room temperature 2 3 4 5 6 7 Total BE, BC and CS Junction Capacitances Split of BE and BC Junction Capacitances C JEI0, C JEP0, C JCI0, C JCX0 BC avalanche F AVL, Q AVL Transfer at low C 0, Q P0, H JCI assuming H JEI = Internal BE I BEIS, M BEI, I EIS, M EI Parasitic substrate transistor everse BC I TSS, I BCIS, I BCXS Series esistances CX, E 8 9 0 2 3 Transit time at low T 0, T BVL, D T0H, A LJEI (=A LJEP ) Transfer at low and medium H JEI, correction of C 0, Q P0, H JCI obtained in 4 Critical CI0, V CES, V PT, V Lim Transit time at high T EF0, G TFE, T HCS, A LHC Base esistance BI0, BX, F GEO, F DQ0 NQS effect A LIT, A LQF 4/7

- BC Avalanche - Transfer at low - BE at low - Substrate and reverse -Im(y 2 )/ω [ff] Total junction capacitance extraction 65 60 55 50 45 40 35 30 25 20 2 2.5 3 3.5 4 4.5 5 5.5 6 Im( y 2 + y ) C BE ----------------------------------- ω Im( y 2 ) C BC ----------------------- ω Im( y 2 + y 22 ) C CS ----------------------------------- ω Frequency [GHz] V BC =0.6 V V BC =-0.6 V C ln(c) [x0 5 BC [ff] ] 3.45 3.4 3.35 3.3 3.25 3.2 3.5 3. 3.05 65 60 55 50 45 40 35 ln(c J0.V ZJ J ) -z J -0.6-0.4-0.2 0 0.2 0.4 ln(v J -V) Z J lnc = ln C J0 V J Z J ln( V J V) Iteration on V J in order to obtain the best linear regression 30 25 20-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 V BC [V] 5/7

Split of the BE junction capacitance C BE = C + C 2 C = X JBE C BE = A E C JEA C 2 = ( X JBE ) C BE = P E C JEP B r j E C C 2 - BC Avalanche - Transfer at low C JEA A E X JBE = ------------------------- = C BE C JEA A E ----------------------------------------------------------- A E C JEA + P E C JEP W E r j - BE at low - Substrate and reverse Assumption : C 2 π r j ( L E + W E ) C JEA = π -- r 2 j P E C JEA L E X JBE = --------------------------------- π P E + 2 -- r ------- j A E C JEI0 = X JBE C BE P E = 2 ( L E + W E ) C JEP0 = ( X JBE ) C BE A E = W E L E 6/7

- BC Avalanche - Transfer at low - BE at low - Substrate and reverse Im(Y 2 ) / ω [ff] -2-4 -6-8 -20-22 -24-26 -28 Split of the BC junction capacitance [] fixed V BE -30 -a-c JCX0-32 0 20 40 60 80 00 20 40 60 80 200 lim --- Im( Y ω 2 ) ω 0 ω [0 9 rad/s] = - C JCX0 a C JCX0 --- Im( Y ω 2 ) a ----------------------- + b ω 2 C JCX0 The external part C JCX0 of the BC capacitance comes from an optimization of the imaginary part of Y 2 at and for a fixed V BE. Then, the internal BC capacitance can be deduced from C JCI0 = C BC C JCX0 Y 2 = jωg b C JCI0 ----------------------------------------------------------------- jωc g b + g π + jω( C π + C JCI0 ) JCX0 = g C b JCI0 where g = ------- b ; a = ------------------------ ; b = B g + g b π lim --- Im( Y ω 2 ) ω = C + C JCI0 π 2 ------------------------------- g + g b π C JCX0 [] Seonghearn Lee, "A New Technique to Extract Intrinsic and Extrinsic Base-Collector Capacitances of Bipolar Transistors Using Y-parameter Equations", submitted to 2003 IEEE ICMTS, Monterey, CA. 7/7

- BC Avalanche - Transfer at low - BE at low - Substrate and reverse ln[(m-)/(v DCI + V CB )] I AVL B -6-6.2-6.4-6.6-6.8-7 -7.2-7.4 I B I B0 C I C0 Q AVL ------------------------------------ C V JCI0 DCI ln(f AVL ) -7.6 0.5 0.52 0.53 0.54 0.55 0.56 0.57 0.58 [(V DCI + V CB )/V DCI ] Z CI - BC avalanche I = I + I = M I C CO AVL CO I B = I I BO = I B AVL The multiplication factor M is given by I C E M I C = ------------------------- I I C B I B / I B0.2 0.8 0.6 0.4 0.2 0 V BE =0.7V -0.2 0 0.2 0.4 0.6 0.8.2.4 V CB [V] I B =I AVL I AVL Q M = ------------- F ( V V I AVL DCI + AVL = ) exp CB ----------------------------------------------------------- CO C ( V V JCI DCI + ) CB M ln --------------------------------- = V + V DCI CB Q AVL V + V DCI CB Z CI ln( F ) ------------------------------------ --------------------------------- AVL C V V JCI0 DCI DCI Linear regression on ln --------------------------------- vs. V DCI + V CB Z CI --------------------------------- V DCI parameters F AVL and Q AVL. M V + V DCI CB gives the avalanche 8/7

- BC Avalanche - Transfer at low - BE at low - Substrate and reverse I C /(C 0 /Q P0.exp(V BE /V T ) I I = C T 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.5 0. 0.05 Transfer at low C 0 ------------ exp Q PT A linear regression on C Q gives 0 C 0 and P0 = ------------- Q H P0 = ------------- H JEI JEI V B'E' V ------------- B'C' V exp -------------- T V T At low and Q = Q + H Q PT P0 JEI JEI V B'E' exp ------------- C V 0 T Q P0 Q = ------------- ------------------------------ ------------- JEI H JEI I H C JEI 0 0.5 0.6 0.7 0.8 0.9 V BE [V] I C [A] Q JEI [fc] 30 29 28 27 26 25 24 23 22 2.2 2.3 2.4 2.5 2.6 2.7 exp(v B E /V T )/I C [0-6 A - ] 0-0 -2 0-3 0-4 0-5 0-6 0-7 0-8 0.5 0.6 0.7 0.8 0.9 V BE [V] 9/7

- BC Avalanche - Transfer at low - BE at low - Substrate and reverse (I C -I AVL )/(C 0 /H JEI )/[exp(v B E /V T )-exp(v B C /V T )] [fc] I C /I C (V CB =0V) 4.64 4.62 4.6 4.58 4.56 4.54 4.52-4 -2-0 -8-6 -4-2 0 2.008.007.006.005.004.003.002.00 V B E =0.7V V B E =0.7V Q JCI [fc] 0 0. 0.2 0.3 0.4 0.5 0.6 V CB [V] Forward Early effect H JCI H JCI = ------------- H JEI Collector at V BE =0.7V and sweep of V BC. The collector is corrected by the BC avalanche I AVL I I Q H C AVL P0 JCI ----------------------------------------------------------------------------------------------- = ------------- + Q + ------------- Q C V 0 B'E' ------------- ------------- V B'C' H JEI H JCI JEI JEI exp exp -------------- H V JEI T V T H A linear regression gives JCI H JCI = -------------. H JEI I Normalized collector C -------------------------------------- versus I ( V = 0V) C CB V CB 0/7

- BC Avalanche - Transfer at low - BE at low Base Emitter, Substrate and reverse β 340 330 320 30 300 290 280 270 0-7 0-6 0-5 0-4 0-3 I C [A] Assuming and M BEI = I B V B'E' ------------------------------------------- I I ------------- --------------- -------------- = + exp V BEIS EIS B'E' V T M M EI BEI exp --------------------------- M V BEI T A sweep of M EI is made (and M BEI in case of non ideal base ) I BEIS and I EIS comes from linear regression with the best correlation coefficient - Substrate and reverse I C, I B [A] 0-7 0-8 0-9 I C V BC =0.5V As the emitter is connected to the substrate, the HF measurements do not allow to directly measure the substrate. Therefore, in order to determine the parameters of the substrate PNP, we performed measurements with positive V BC (Substrate PNP on). 0-0 I B The transfer I TSS is then optimized on the I C (V BE ) curves at V BC >0V. 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 V BE [V] /7

- BC Avalanche - Transfer at low - BE at low - Substrate and reverse /gm [Ω] I C [ma] Emitter and collector series resistances 9 8.5 8 7.5 7 6.5 6 5.5 3.5 3 2.5 2.5 0.5 0-0.5 5 60 80 00 20 40 60 80 200 - E /I C [A - ] I B =0.,, 2, 4, 8, 20, 50 µa -.5-0. -0.05 0 0.05 0. V CE [V] Using a simple equivalent circuit the following expression can be deduced ------- --------- + ------ B = + + ------- with g g E β β m mi 0 0 Assuming B ------- «, I I, m a linear regression is β E C T C = 0 di I T T di g mi and C = ------------------------------- g = dv m ( I ) V m BEi C T T dv BE applied on ------- g m V T = ------- + I E C Due to these assumptions, E obtained with this method is 0-20% over estimated A first value of CX is given by estimation from the transistor layout and sheet resistances. A fit on I C (V CE ) in hard saturation region is then performed 2/7

Transfer at medium 350 300 250 200 β /β 50 H JEI = 0.06 0.04 0.02 0.0 H JEI optimization 0.008 00 0.006 - BC Avalanche - Transfer at low - BE at low 50 0 0.65 0.7 0.75 0.8 0.85 0.9 0.95.05. V BE [V] 0.004 0.002 0 5 0 5 20 25 30 35 40 45 50 I C [ma] - Substrate and reverse Q Approximate effective knee P0 I = ----------- Keff due to T 0 the rough estimation of Q P0 assuming H JEI = H JEI is obtained by dichotomy in the region where I -- vs. I is linear at : C -- -------------- β C + ------------ β β max I Keff The calculated H JEI allows to correct the collector parameters extracted previously at low density of :,, H = H H C C H JCI JCI JEI 0 0 JEI = Q = Q H P0 P0 JEI β 350 300 250 200 50 00 H JEI =0.39 50 0 0.7 0.75 0.8 0.85 0.9 0.95.05. V BE [V] 3/7

- BC Avalanche - Transfer at low - BE at low - Substrate and reverse B [Ω] 46 44 42 40 38 36 34 Base resistance extraction [2] A modified h is used in order to avoid the split of the BC capacitance. h = ----------------------- y + y 2 lim h B + E ω Im(h* ) [Ω] -00-200 -300-400 -500 V BE =0.94V 0 00 200 300 400 500 e(h* ) [Ω] Optimization of ln( + η) Q JEI + Q F F QI B = BX + I ----------------------- ---------------------------------------- η Q JEI + Q F I I BEI η = F GE0 ---------------------- V T Q 0 I = BI0 ---------------------------------------------------------------- Q 0 + Q JEI + Q JCI + Q F 32 30 0 5 20 25 30 35 40 45 50 I C [ma] Q 0 = Q P0 ( + F DQ0 ) [2] T.Nakadai, K.Hashimoto, Measuring the Base esistance of Bipolar Transistors, BCTM 99, pp. 200-203 4/7

Main results (50 GHz SiGeC BiCMOS process, 0.25x2.65 µm 2 ) β 500 Avalanche 400 300 200 f T [GHz] 40 V BC =-0.5, -0.25, 0, 0.2, 0.4, 0.6V 20 00 80 60 40 00 V BC =-, -0.5, 0, 0.5 V 0.00 0.0 0. 0 00 I C [ma] 20 0 0 00 I C [ma] 20.0-8.0-2 6 4 I B =0.,, 2, 4, 8, 20, 50, 00 µa.0-3.0-4 I C [ma] 2 0 8 I C, I B [A].0-5.0-6.0-7 6.0-8 4 2.0-9.0-0 V BC =-, -0.5, 0, 0.5 V 0 0 0.2 0.4 0.6 0.8.2.4 V CE [V].0-0.4 0.5 0.6 0.7 0.8 0.9. V BE [V] 5/7

Temperature behavior (f T =70 GHz, A E =0.25x6.25µm 2 ) f T [GHz] 80 70 60 50 40 30 20 0-40C -40C 0C 0C 27C 27C 60C 60C 20C 20C TH =0 K/W 0 0.0 0. 0 00 I C [ma] I C [ma] 0 2 0 0 0 0 - TH =0 K/W 0-2 -40C 0-3 -40C 0C 0-4 0C 27C 0-5 27C 60C 60C 0-6 20C 20C 0-7 0.5 0.6 0.7 0.8 0.9..2 V BE [V] TH =0 K/W TH =3500 K/W 0.95 0.95 0.9 0.9 V BE [V] 0.85 0.8 V BE [V] 0.85 0.8 0.75 0.75 0.7 I B =0.,4, 8, 6, 40, 80 µa 0.7 I B =0.,4, 8, 6, 40, 80 µa 0.65 0 0.5.5 2 2.5 V CE [V] 0.65 0 0.5.5 2 2.5 V CE [V] 6/7

Conclusion and perspectives Conclusion and Perspectives The HICUM compact model has been evaluated on different BiCMOS processes up to 50 GHz f T. Comparisons to measurement demonstrate the suitability of the model for high speed applications. A single transistor parameter extraction method has been developed and applied to different processes and devices The main extracted parameters follow geometry scaling laws, validating the method used and the physical meaning of parameters. The next step is the extension of the extraction procedure to obtain a geometry scalable parameter set. Detailed investigation of temperature behaviour and self-heating is also in progress. 7/7