Periodic monopoles and difference modules

Similar documents
HYPERKÄHLER MANIFOLDS

HITCHIN KOBAYASHI CORRESPONDENCE, QUIVERS, AND VORTICES INTRODUCTION

Stable bundles on CP 3 and special holonomies

Harmonic bundle and pure twistor D-module

Linear connections on Lie groups

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang

Hyperkähler geometry lecture 3

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Uniformization in several complex variables.

Holomorphic line bundles

Citation Osaka Journal of Mathematics. 43(2)

Deformations of calibrated D-branes in flux generalized complex manifolds

Higgs Bundles and Character Varieties

arxiv: v1 [math.dg] 19 Mar 2012

Infinitesimal Einstein Deformations. Kähler Manifolds

Citation Osaka Journal of Mathematics. 43(1)


Hodge Structures. October 8, A few examples of symmetric spaces

Twistor constructions of quaternionic manifolds and asymptotically hyperbolic Einstein Weyl spaces. Aleksandra Borówka. University of Bath

UNIVERSAL UNFOLDINGS OF LAURENT POLYNOMIALS AND TT STRUCTURES. Claude Sabbah

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

Gravitating vortices, cosmic strings, and algebraic geometry

Geometry of symmetric R-spaces

Titles and Abstracts

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

arxiv:alg-geom/ v1 29 Jul 1993

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

APPROXIMATE YANG MILLS HIGGS METRICS ON FLAT HIGGS BUNDLES OVER AN AFFINE MANIFOLD. 1. Introduction

Minimal surfaces in quaternionic symmetric spaces

Quaternionic Complexes

Geometric Structures in Mathematical Physics Non-existence of almost complex structures on quaternion-kähler manifolds of positive type

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula

The Calabi Conjecture

Donaldson Invariants and Moduli of Yang-Mills Instantons

Generalized Hitchin-Kobayashi correspondence and Weil-Petersson current

Questions arising in open problem sessions in AIM workshop on L 2 -harmonic forms in geometry and string theory

HARMONIC MAPS INTO GRASSMANNIANS AND A GENERALIZATION OF DO CARMO-WALLACH THEOREM

Symplectic varieties and Poisson deformations

The topology of asymptotically locally flat gravitational instantons

ON THE CLASSIFICATION OF HOMOGENEOUS 2-SPHERES IN COMPLEX GRASSMANNIANS. Fei, Jie; Jiao, Xiaoxiang; Xiao, Liang; Xu, Xiaowei

Poles of Instantons and Jumping Lines of Algebraic Vector Bundles on P

Algebraic v.s. Analytic Point of View

1 Moduli spaces of polarized Hodge structures.

Math. Res. Lett. 13 (2006), no. 1, c International Press 2006 ENERGY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ.

Reduction of Homogeneous Riemannian structures

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem

THE MODULI SPACE OF TRANSVERSE CALABI YAU STRUCTURES ON FOLIATED MANIFOLDS

SPECTRAL DATA FOR L 2 COHOMOLOGY. Xiaofei Jin A DISSERTATION. Mathematics

CHARACTERISTIC CLASSES

Applications of Discrete Mathematics to the Analysis of Algorithms

The Higgs bundle moduli space

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

Compact Riemannian manifolds with exceptional holonomy

REAL INSTANTONS, DIRAC OPERATORS AND QUATERNIONIC CLASSIFYING SPACES PAUL NORBURY AND MARC SANDERS Abstract. Let M(k; SO(n)) be the moduli space of ba

A relative version of Kostant s theorem

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts

Symmetric Spaces. Andrew Fiori. Sept McGill University

Constructing compact 8-manifolds with holonomy Spin(7)

Stable bundles with small c 2 over 2-dimensional complex tori

REPRESENTATIONS OF COMPLEX HYPERBOLIC LATTICES INTO RANK 2 CLASSICAL LIE GROUPS OF HERMITIAN TYPE

CHAPTER 1. Principal bundles and connections. 1. Motivation: Gauge theory. The simplest example of a gauge theory in physics is electromagnetism.

EXISTENCE THEORY FOR HARMONIC METRICS

Inverse Galois Problem for C(t)

The tangent space to an enumerative problem

Classification of discretely decomposable A q (λ) with respect to reductive symmetric pairs UNIVERSITY OF TOKYO

FLAT BUNDLES ON AFFINE MANIFOLDS. 1. Introduction

Modern Geometric Structures and Fields

Loop Hodge structures and harmonic bundles

Induced Representations and Frobenius Reciprocity. 1 Generalities about Induced Representations

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY

NEGATIVITY OF THE CURVATURE OPERATOR OF A BOUNDED DOMAIN. Dedicated to Professor Tadashi Kuroda on his sixtieth birthday. (Received May 16, 1986)

Cohomology of the Mumford Quotient

Torus actions and Ricci-flat metrics

arxiv:math/ v1 [math.ag] 18 Oct 2003

Moment map flows and the Hecke correspondence for quivers

Geometric Langlands duality and the equations of Nahm and Bogomolny

F O R SOCI AL WORK RESE ARCH

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

Geometry of moduli spaces

September 27, :51 WSPC/INSTRUCTION FILE biswas-loftin. Hermitian Einstein connections on principal bundles over flat affine manifolds

arxiv: v2 [math.ag] 5 Jun 2018

Topic: First Chern classes of Kähler manifolds Mitchell Faulk Last updated: April 23, 2016

Flat complex connections with torsion of type (1, 1)

ON THE MAPPING CLASS GROUP ACTION ON THE COHOMOLOGY OF THE REPRESENTATION SPACE OF A SURFACE

Morse theory and stable pairs

A DANILOV-TYPE FORMULA FOR TORIC ORIGAMI MANIFOLDS VIA LOCALIZATION OF INDEX

DELIGNE S THEOREM ON THE SEMISIMPLICITY OF A POLARIZED VHS OVER A QUASIPROJECTIVE BASE

Published as: J. Geom. Phys. 10 (1993)

FAKE PROJECTIVE SPACES AND FAKE TORI

A Criterion for Flatness of Sections of Adjoint Bundle of a Holomorphic Principal Bundle over a Riemann Surface

Techniques of computations of Dolbeault cohomology of solvmanifolds

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction

Causality and Boundary of wave solutions

The Yang-Mills equations over Klein surfaces

H-projective structures and their applications

Manifolds with holonomy. Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016

Hitchin s system and the Geometric Langlands conjecture

A Joint Adventure in Sasakian and Kähler Geometry

THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES

On the cohomology ring of compact hyperkähler manifolds

Transcription:

Periodic monopoles and difference modules Takuro Mochizuki RIMS, Kyoto University 2018 February

Introduction In complex geometry it is interesting to obtain a correspondence between objects in differential geometry and objects in algebraic geometry. Non-abelian Hodge theory (rough) On complex algebraic manifold, we have the following correspondences: ( ) ( ) Harmonic bundles Higgs bundles (Differential geometry) (Algebraic geometry) ( ( Harmonic bundles (Differential geometry) Harmonic bundles (Differential geometry) ) ) ( ( Flat bundles (Algebraic geometry) Ð-Flat bundles (Algebraic geometry) ) ) Remark Ð-connection Ð ( )=(Ð ò + ò ) + Ð ( ) (Higgs bundle: Ð = ¼, Flat bundle: Ð = ½)

Rough statement of the main result Theorem We have a natural correspondence of the following objects: Irreducible periodic monopoles of GCK type Stable parabolic difference modules of degree ¼

Explanation of the main result Monopoles (Å, ) : an oriented -dimensional Riemannian manifold. (, ) : a vector bundle with a Hermitian metric on Å. : a unitary connection of (, ). : an anti-self adjoint endomorphism of (, ) (called Higgs field). Definition (,,, ) is called monopole on Å if ( ) = ¼ (Bogomolny equation). Here, denote the Hodge star operator.

Periodic monopoles of generalized Cherkis-Kapustin type In this talk, we are particularly interested in monopoles (,,, ) on (Ë ½ R ¾ )\ =(Ë ½ C)\ ( finite subset). Condition around Any point of should be Dirac type singularity of (,,, ). Dirac type singularity was introduced by Kronheimer. Proposition (M-Yoshino) ( È is Dirac type singularity É = Ç (È, É) ½) for any É close to È. Condition around Ë ½ { } = Ç ( ÐÓ Û ) and ( ) ¼ as Û (Û: the coordinate of C). Definition (,,, ) is a periodic monopole of GCK (generalized Cherkis- Kapustin) type if the above conditions are satisfied.

Difference modules Let Ð be any complex number (twistor parameter). Let be the automorphism of C[Ý] determined by (Ý)=Ý+¾ ½Ð. (The pull back of C C given by (Ý)=Ý+¾ ½Ð.) Definition A (¾ ½Ð-)difference module is a C[Ý]-module Î with a C-linear automorphism such that ( )= ( ) ( ) ( C[Ý], Î). A = Ò ZC[Ý]( ) Ò is an algebra by (Ý+¾ ½Ð) = (Ý). Difference modules are clearly equivalent to A-modules. Definition Î is torsion-free torsion-free C[Ý]-module. Î is of finite type finitely generated over A, and Ñ C(Ý) Î C(Ý)<.

Parabolic structure at finite place Let Î be a torsion-free difference module of finite type. Definition Parabolic structure at finite place of Î consists of A free C[Ý]-module Î Î s.t. A Î = Î and Î C(Ý)= Î C(Ý). A function Ñ C Z ¼ s.t. C Ñ( )<. We assume Î C[Ý] =( ) ½ (Î) C[Ý], where ={ C Ñ( )>¼}, and C[Ý] denotes the localization of C[Ý] with respect to Ý ( ). For each C, Ø =(¼ Ø (½) < Ø (¾) < <Ø (Ñ( )) Lattices Ä, of Î C((Ý )) ( =½,...,Ñ( ) ½). < ½). We also set Ä,¼ = Î C[[Ý ]] and Ä,Ñ(Ü) =( ) ½ Î C[[Ý ]]

Parabolic structure at infinity Let Î be a torsion-free difference module of finite type. Let Î denote the formal completion at, Î = Î C[Ý]C((Ý ½ )) (C((Ý ½ ))-vector space). Parabolic structure at of Î is a filtered bundle P Î = ( ) P Î R over Î, i.e., Each P Î is a C[[Ý ½ ]]-lattice of Î, i.e., P Î are free C[[Ý ½ ]]-submodules of Î s.t. P Î C((Ý ½ ))= Î. P Î P Î ( ). P +Ò Î = Ý Ò P Î ( R, Ò Z). R, > ¼ such that P Î = P + Î.

Formal difference modules We have the automorphism of C((Ý ½ )) given by (Ý ½ )=Ý ½ (½+¾ ½Ð Ý ½ ) ½. Î Î induces Î Î s.t. ( )= ( ) ( ). For any Õ Z ½, set Ë(Õ) = { Õ ½ =½ b Ý /Õ b C }. Theorem (Turrittin) Ô Z >¼ and a decomposition compatible with Î C((Ý ½/Ô ))= Û Ô ½ Z C b Ë(Ô) Î Û,,b such that C[[Ý ½/Ô ]]-lattices Ä Û,,b Î Û,,b for which ( ½ Ý Û (½+b) ) ÄÛ,,b (Ý ½/Ô ) Ô Ä Û,,b. Set Ö(Û) = C b Ë(Ô) Ñ C((Ý ½/Ô )) Î Û,,b (well defined for Û Q).

Good parabolic structure at infinity A filtered bundle P Î over Î induces a filtered bundle P ( Î C((Ý ½/Ô )) ) over Î C((Ý ½/Ô )). Definition P Î is called good if we have a decomposition P ( Î C((Ý ½/Ô )) ) = Û,,b P Î Û,,b such that ( ½ Ý Û (½+b) ) P Î Û,,b (Ý ½/Ô ) Ô P Î Û,,b ( R). Parabolic difference module Parabolic difference module means a torsion-free difference module of finite type with a parabolic structure at finite place and a good parabolic structure at infinity. ( Î,(Î, Ñ,{Ø, Ä } C),P Î )

Degree Let (Î,(Î, Ñ,{Ø, Ä } C),P Î) be a parabolic difference module. We have the O P ½-module P ¼ V induced by free C[Ý]-module Î and a lattice P ¼ Î of Î. We obtain (P ¼ V )= P ½ ½(P ¼ V ). For each ½< ¼, we have the C-vector space Ö P ( Î) = P Î/ P< Î. Ö(Û) =,b Ñ C((Ý ½/Ô )) Î Û,,b for Û ½ Ô Z. If Ñ( )>¼, for each, we set ( (Ä, +½, Ä, ) = ) ( Ð Ò Ø Ä, +½/(Ä, +½ Ä, ) ) Ð Ò Ø Ä, /(Ä, +½ Ä, ). Definition The degree of the parabolic difference module is ( ) Î,(Î, Ñ,{Ø, Ä } C),P Î = (P ¼ F Î ) ÑC Ö P ½< ¼ ( Î) Û ¾ Ö(Û) + C (½ Ø ( ) ) (Ä,, Ä, ½).

Stability condition For any C(Ý)-subspace Î Î = Î C(Ý) such that ( Î )= Î, we have the induced parabolic difference module Î : Î = Î Î, Î = A Î, Ä, = Ä, Î Î = Î C((Ý ½ )), P Î = P Î Î. Definition (Î,(Î, Ñ,{Ø, Ä } C)P Î) is stable if (Î,(Î, Ñ,{Ø, Ä } C),P Î ) Ñ C(Ý) Î for any subspace ¼ Î Î with ( Î )= Î. < (Î,(Î, Ñ,{Ø, Ä } C),P Î) Ñ C(Ý) Î

Main theorem Theorem For each Ð, we have a natural bijective correspondence of the following objects: Irreducible periodic monopoles of GCK type. Stable parabolic ¾ ½Ð-difference modules of degree ¼. This is an analogue of the correspondence of harmonic bundles and Ð-flat bundles. Charbonneau and Hurtubise studied the Kobayashi-Hitchin correspondence of Dirac type singular monopoles Ë ½ Ë and holomorphic vector bundles with an automorphism (Ð = ¼). Recently, Kontsevich and Soibelman are developing the non-abelian Hodge theory of doubly periodic monopoles.

From monopoles to parabolic difference modules Case Ð = ¼ We regard Ë ½ C Û as the quotient space of R Ø C Û by the Z-action Ò (Ø, Û)=(Ø+ Ò, Û) (Ò Z). Let (,,, ) be a monopole on Ë ½ C Û. {Ø} C Û are holomorphic vector bundles by the operator ò,û = Û. We obtain {¼} C Û {½} C Û induced by the parallel transport along the paths {(Ø, Û) ¼ Ø ½} with respect to ò,ø = Ø ½. is holomorphic by [ò,ø,ò,û]=¼ ( = Bogomolny equation). {¼} C Û = {½} C Û. We obtain a holomorphic bundle {¼} C Û with an automorphism, and hence a ¼-difference module À ¼ (C Û, {¼} C Û ) (too large).

Case Ð ¼ We introduce two coordinates (Ø ¼, ¼ ), (Ø ½, ½ ) on R Ø C Û : (Ø ¼, ¼ )= ½ ( (½ Ð ¾ )Ø+ ¾ ÁÑ(Ð Û), ) Û+¾ ½ÐØ+ ¾ Ð Û, ½+ Ð ¾ (Ø ½, ½ )= ( Ø ¼ + ÁÑ(Ð ¼ ), (½+ Ð ¾ ) ¼ ) = ( Ø+ ÁÑ(Ð Û), Û+¾ ½ÐØ+ Ð ¾Û ). The Z-action is described as Ò (Ø ½, ½ )=(Ø ½ + Ò, ½ + ¾ ½Ð Ò) (Ò Z). We may identify Ë ½ Ø C Û as the quotient of R ؽ C ½ by the action. Note Ø ¼ Ø ¼ + ¼ ¼ = Ø Ø+ Û Û. By the Bogomolny equation, ò,ø ¼ = ؼ ½ and ò, = ¼ are commutative. ¼

We have the relation ò ؽ = ò ؼ, ò = ½ ½+ Ð ¾ Ð ¾ ½ ½Ð ò ؼ + ½ ½+ Ð ¾ ò ¼. We define the differential operators ò,ø ½ and ò, ½ on as follows: ò,ø ½ = ò,ø ¼, ò, = ½ ½+ Ð ¾ Then, [ ò,ø ½, ò, ½ ] = ¼. Ð ¾ ½ ½Ð ò,ø ¼ + {ؽ } C ½ are holomorphic vector bundles by ò, ½. ½ ½+ Ð ¾ ò, ¼. holomorphic isomorphism {¼} C ½ {½} C ½ by ò,ø ½. We obtain a holomorphic bundle {¼} C ½ with an isomorphism {¼} C ½ ( ½ ) ( {¼} C ½ ), ( ( ½ )= ½ + ¾ ½Ð). We obtain a ¾ ½Ð-difference module À ¼ (C, ½ {¼} C ½ ) (too large).

Meromorphic extension We regard {Ø ½ } C ½ P ½ ½. For any open subset Í P ½ ½ with Í, we set P( {ؽ } C ½ )(Í) = { (Í\{ }, ) = Ç( ½ Æ ) Æ R }, P ( {ؽ } C ½ )(Í) = { (Í\{ }, ) = Ç( ½ + ) > ¼}. = O P ½( )-module P( {ؽ } C ½ ) and O P ½-modules P ( {ؽ } C ½ ) ( R). Theorem Suppose (,,, ) is a monopole of GCK-type. P( {ؽ } C ½ ) is a locally free O P ½( )-module. P ( {ؽ } C ½ ) ( R) are locally free O P ½-modules. induces an isomorphism P( {¼} C ½ ) P( {½} C ½ ). (We remark P ( {¼} C ½ ) P ( {½} C ½ ) in general.) We need to study the asymptotic behaviour of periodic monopoles around Ë ½ { }, and to obtain the estimate of the curvature.

From periodic monopoles to parabolic difference modules We obtain a C[ ½ ]-free module. Î = Î = À ¼ ( P ½,P( {¼} C ½ ) ). It is naturally a ¾ ½Ð-difference module: ( À ¼ P ½,P( {¼} C ½ ) ) ( À ¼ P ½,P( {½} C ½ ) ) ( = À ¼ P ½,( ½ ) P( {¼} C ½ ) ) ( = À ¼ P ½,P( {¼} C ½ ) ). (P ( {¼} C ½ R) induces a filtered bundle P Î over Î. If (,,, ) has Dirac type singularities at finite points, then is meromorphic. So, Î = Î C( ½ ) is a difference module. We set Î = A Î. We naturally obtain a parabolic structure at finite place. Theorem The above construction induces an equivalence of irreducible periodic monopoles of GCK type and stable parabolic difference modules of degree ¼.

Analogy with the non-abelian Hodge theory C ¾ ={(Þ, Û)} with the Kähler metric Þ Þ+ Û Û is a hyperkähler manifold. Let Í be an open subset of C ¾ Let (,, ) be an instanton on Í, i.e., is a vector bundle with a Hermitian metric and a unitary connection satisfying ( )+ ( )=¼ (ASD equation). For each twistor parameter Ð, we obtain the complex manifold Í Ð holomorphic vector bundle Ð on Í Ð. and the Let C ¾ be a closed subgroup. If Í is -invariant, and if (,, ) is -equivariant, then Ð is also -equivariant. If =C Þ {¼} and Í =C Þ Í Û, then -equivariant instantons are equivalent to harmonic bundles on Í Û, and the -equivariant holomorphic bundles on Í Ð are equivalent to Ð-flat bundles on Í Û. (non-abelian Hodge theory on P ½ ). If =(R ½Z) {¼} and Í =C Þ Í Û, then -equivariant instantons are equivalent to monopoles on Ë ½ Í Û, and -equivariant holomorphic bundles are equivalent to (, ò,ø ¼, ò, ¼ ).

-dimensional meromorphic Ð-flat bundle We may regard (, ò,ø ½, ò, ½ ) as an -dimensional Ð-flat bundle. M Ð =(R ؽ C ½ )/Z Ë ½ Ø C Û C Û is given by (Ø ½, ½ )= Ì ÌM Ð ½ (ÌC Û ) is described as Ì (ò ؽ )= ½ ½ ½+ Ð ¾( ¾ ½Ð ؽ ) ( ½ ) ½ ¾ ½Ð ½+ Ð ¾ òû + ¾ ½Ð òû, Ì (ò )= ½ ½+ Ð ¾ ò Û. We define the operator D Ð on by D Ð ( ) =(½+ Ð ¾ ) ( ½ ) ò Ø ½ + ò ( ) Û+(½+ Ð ¾ )ò ½ ( ) Û. ½ ¾ For an open subset Í C Û, for local sections of on ½ (Í), and for -functions on Í, D Ð ( ½ ( ) )= ½ ( )D Ð ( )+ ½( (Ð ò Û + ò Û ) ) Monopoles are harmonic bundles on Ð-flat bundles.

KH-correspondence for analytically stable bundles Hermitian-Einstein metric (, Û): Kähler manifold (, ò ): holomorphic vector bundle on. For a Hermitian metric of, let ( ) denote the curvature of the Chern connection. Definition is called a Hermitian-Einstein metric of (, ò ) if Ä ( )= ÌÖ Ä ( ) Ö Ò.

Analytically stable bundles Let be a compact Lie group. Suppose that and (, ò, ¼ ) are equipped with -action. Suppose Ä ( ¼ ) <. For any saturated O -submodule, we have with codimension ¾ such that is a subbundle of \ \, and let ¼, denote the induced metric of. We define \ Ñ(, ¼ ) = ½ Ö Ò ÌÖ ( Ä ( )) ¼, ÚÓÐ R { } Definition (, ò, ¼ ) is analytically stable with respect to the -action if Ñ(, ¼ )<Ñ(, ¼ ) for any -invariant saturated subsheaf with ¼<Ö Ò < Ö Ò.

Theorem of Simpson (A1) The volume of (, Û) is finite. (A2) R ¼ such that - {Ü (Ü) } is compact for any, - is bounded. (A3) R ¼ R ¼ with (¼)=¼ and (Ü)=Ü (Ü ½) such that the following holds for any bounded function R ¼ : - If for >¼, then ÙÔ ( ) ( ). Moreover, if ¼ then = ¼. Theorem (Simpson) Under these assumptions, if (, ò, ¼ ) is analytically stable w.r.t - action, then there exists a -invariant Hermitian-Einstein metric of (, ò ) such that (i) and ¼ are mutually bounded, (ii) Ø( )= Ø( ¼ ), (iii) ò ( ½ ¼ ) is ľ.

A generalization (A3) ½, ¾ > ¼, R >¼ with <, such that the following holds for any bounded function R ¼ : - If for >¼, then ÙÔ ½ + ¾. Moreover, if ¼ then = ¼. Theorem Under this assumption, if (, ò, ¼ ) is analytically stable w.r.t -action, then there exists a -invariant Hermitian-Einstein metric of (, ò ) such that (i) and ¼ are mutually bounded, (ii) Ø( )= Ø( ¼ ), (iii) ò ( ½ ¼ ) is ľ.

Application to monopoles (Ð = ¼) We consider the action of Z ¾ and R-action Ö on C ¾ Þ,Û given by (Ò ½,Ò ¾ )(Þ, Û)=(Þ+Ò ½ + ½Ò ¾, Û), Ö (Þ, Û)=(Þ+, Û). Set =C ¾ /Z ¾ = Ë ½ (Ë ½ C Û ). We have the induced Ë ½ -action Ö on. Map Õ ¼ Ë ½ C is induced by (Þ, Û) (ÁÑ(Þ), Û)=(Ø, Û). Lemma Let Ë ½ C be a finite subset. Ë ½ -equivariant (, ò ) on \ Õ ½ ( ) ¼ (, ò,ø,ò,û) on (Ë ½ C)\ Ë ½ -equivariant (, ò, ) on \ Õ ½ ¼ ( ) with Ä ( )=¼ monopoles on (Ë ½ C)\.

Application to monopoles (Ð ¼) Let Ð denote the complex manifold with the complex structure given by ¼ = ½ ½ ), ½+ Ð ¾(Þ+ÐÛ ÐÛ+ Ð ¾ ¼ = Û). ½+ Ð ¾(Û+Ð(Þ Þ)+о Note ¼ ¼ + ¼ ¼ = Þ Þ+ Û Û. We have (Ø ¼, ¼ )=(ÁÑ( ¼ ), ¼ ). Lemma Ë ½ -equivariant (, ò ) on Ð \ Õ ½ ( ) ¼ (, ò,ø ¼, ò, ) on (Ë ½ C)\. ¼ Ë ½ -equivariant (, ò, ) with Ä ( )=¼ on Ð \ Õ ½ ( ) ¼ monopoles on (Ë ½ C)\. We may apply the Kobayashi-Hitchin correspondence for analytically stable bundles to the construction of monopoles on Ë ½ C\.

Examples Example 1 Take a finite set Ë C and l Ë Z >¼. Consider È(Ý)= Ë(Ý ) l( ) C(Ý). We set Î È =C(Ý) ½ C(Ý) ¾ with the automorphism : ( ) ¼ È(Ý) ( ½, ¾ )=( ½, ¾ ) Set Î È =C[Ý] ½ C[Ý] ¾ and Î È = A Î È in Î È. Proposition Take any (Ø ) Ë {¼ Ü<½} Ë. Set l = Ël( )= Ý È. l odd There exists a monopole on (Ë ½ C)\{(Ø, ) Ë} whose underlying ¼-difference module is Î È. l even There exist monopoles on (Ë ½ C)\{(Ø, ) Ë} parametrized by { } ( ½, ¾ ) R ¾ ½ + ¾ + (½ Ø )l( )=¼ Ë whose underlying ¼-difference modules are Î È. ½ ¼

If Î is a C(Ý)-subspace of Î È = Î È C(Ý) such that ( Î )= Î, then Î is Î È or ¼. We consider the parabolic structure at finite place. We define Ñ C Z ¼ by Ñ( )=½ ( Ë) and Ñ( )=¼ ( Ë). For Ë, we take ¼ Ø < ½. It is enough to classify the good parabolic structure at over PÎ È such that the parabolic degree is ¼.

l is odd Let Ø C((Ý ½/¾ )) be determined by Ø ¾l = È(Ý) and Ý ½/¾ Ø C[[Ý ½/¾ ]]. We set Ú ½ = Ø l ½ + ¾ and Ú ¾ = Ø l ½ ¾, then (Ú ½ )=Ø l Ú ½ and (Ú ¾ )= Ø l Ú ¾. A good filtered bundle P Î is determined by P (Ú ½ )= P (Ú ¾ )=. Because ½ =(¾Ø l ) ½ (Ú ½ + Ú ¾ ) ¾ = ¾ ½ (Ú ½ Ú ¾ ), we have P ( ½ )= l ¾ and P ( ¾ )= ¾. The degree of the parabolic ¼-difference module is ¼ l ¾ + (½ Ø )( l( )) ½ (l/¾)¾= ¾ ¾ Ë Ë (½ Ø )l( ). is uniquely determined by (Ø ) Ë by the vanishing condition of the degree. Proposition (l odd) For (Ø ) Ë {¼ Ü<½} Ë, we have a monopole on (Ë ½ C)\{(Ø, ) Ë} whose underlying ¼-difference module is Î È.

l=¾ even We have Ø C((Ý ½ )) determined by Ø ¾ = È(Ý) and Ý ½ Ø C[[Ý ½ ]]. We set Ú ½ = Ø ½ + ¾, Ú ¾ = Ø ½ ¾, then (Ú ½ )=Ø Ú ½ and (Ú ¾ )= Ø Ú ¾. A good filtered bundle P Î is determined by P (Ú )= ( =½, ¾). The parabolic degree is ½ ¾ (½ Ø )l( ) ½ ¾ ( ) ¾= ½ ¾ (½ Ø )l( ). Ë Ë Proposition (l even) For (Ø ) Ë {¼ { Ü < ½} Ë, we have monopoles on (Ë ½ C)\{(Ø }, ) Ë} parametrized by ( ½, ¾ ) R ¾ ½ + ¾ + Ë(½ Ø )l( ) = ¼ whose underlying ¼-difference module is Î È.

Example 2 Take a polynomial É(Ý) C[Ý]. Consider Î = Î =C[Ý] ½ C[Ý] ¾ with the action ( ) ( ½, ¾ )=( ½, ¾ ) Set = É+É ½ É ¾ ¾ C((Ý ½ )), then and ½ are the roots of É. ¼ ½ Let Ñ C Z ¼ be given by Ñ( )=¼ for any. Set Ú ½ = ½ + ¾ and Ú ¾ = ½ + ½ ¾, then ( ½ )= ½ and ( ¾ )= ½ ¾. A good parabolic filtered bundle P Î over Î is determined by = P (Ú ). The parabolic ¼-difference module (Î,(Î, Ñ),P Î) is stable of degree (É) ½ ¾. Proposition Wehave monopoles on Ë ½ C parametrizedby { ( ½, ¾ ) R ¾ ½ + ¾ + (É)=¼ } whose underlying ¼-difference module is Î. ½ É.