ALE 23. Balancing Redox Reactions. How does one balance a reaction for both matter and charge?

Similar documents
S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

When will hydrochloric acid not be enough to dissolve a metal?

Worksheet 25 - Oxidation/Reduction Reactions

TYPES OF CHEMICAL REACTIONS

Oxidation-Reduction Reactions

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

Redox Worksheet 1: Numbers & Balancing Reactions

Ch. 20 Oxidation-Reduction Reactions. AKA Redox Reactions

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

Help! I m Melting, wait...i m dissolving! Notes (Ch. 4)

CHEMISTRY 40S: AQUEOUS SOLUTIONS LESSON 4 NOTES. When you have completed this lesson, you will be able to:

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta

Ch. 5 Oxidation-Reduction Reactions. Brady & Senese, 5 th Ed.

Oxidation & Reduction (Redox) Notes

Colours in common redox reactions

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Analysing Acids and Bases

Unit 5 Part 2: Redox Reactions and Electrochemistry

Unit 8: Redox and Electrochemistry

Reactions in aqueous solutions Redox reactions

Chapter 4 Electrolytes and Aqueous Reactions. Dr. Sapna Gupta

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry

Revision of Important Concepts. 1. Types of Bonding

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

8.6 Oxidation-Reduction Reactions

Today s Objectives: Section 13.3 (pg )

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary

An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine

Reactions in Aqueous Solution

Chapter Four. Chapter Four. Chemical Reactions in Aqueous Solutions. Electrostatic Forces. Conduction Illustrated

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9

Today s Objectives: Section 13.2 (pp )

Oxidation-Reduction (Redox) Reactions

1.7 REDOX. Convert these to ionic and half equations and you can see clearly how the electrons are transferred:

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions

Chapter 4. Reactions in Aqueous Solution

Chemical Equations. Chemical Reactions. The Hindenburg Reaction 5/25/11

Redox Reactions. Sections 4.9, RW Session ID = MSTCHEM1

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008


Ch 4-5 Practice Problems - KEY

Help! I m Melting, wait...i m dissolving! Notes (Ch. 4)

Oxidation and reduction reactions v Found often in aqueous environments v Examples include, rusting of metals v Cracking a glow stick, where

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

POGIL: Oxidation and Reduction

Another substance, called a reducing agent, causes or promotes the reduction of a metal compound to an elemental compound.

Practice Exam Topic 9: Oxidation & Reduction

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Chapter 4 Chemical Formulas, Reactions, Redox and Solutions

Chem 1A Dr. White Fall Handout 4

Redox Reactions. the loss of electrons by another chemical, oxidation, so both are found together. You must remember

The Nature of Redox. Both oxidation and reduction processes occur together. Each half of the full redox reaction is a. Oxidizing and Reducing Agents

Oxidation I Lose electrons. Reduction I Gain electrons

Types of chemical reactions

Danyal Education (Contact: ) A commitment to teach and nurture

Oxidation numbers. and. balancing equations

Chapter 4 Reactions in Aqueous Solution

Chapter 4 Three Major Classes of Chemical Reactions

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions

Q.1 What is the oxidation state of the elements in?

Oxidation-Reduction Reactions

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

Chemistry 30: Reduction-Oxidation Reactions. Single replacement Formation Decomposition Combustion. Double replacement

Definition 1 An element or compound is oxidized when it gains oxygen atoms

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

Solving Stoichiometry Problems for Reactions in Solution

Chapter 19: Electrochemistry I. Chem 102 Dr. Eloranta

OXIDATION AND REDUCTION

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry

Redox reactions. You can remember this by using OiLRiG: Oxidation is Loss Reduction is Gain. Definition 1: Oxidation

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

Chapter 4: Types of Chemical reactions and Solution Stoichiometry

Chapter 4: Chemical Quantities and Aqueous Reactions

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES

Oxidation-Reduction (Redox)

Electrolytes do conduct electricity, in proportion to the concentrations of their ions in solution.

Oxidation-Reduction Reactions

Electrochemistry Crash Course

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

(c) In marble, we assign calcium ion an oxidation number of +2, and oxygen a value of 2. We can determine the value of carbon in CaCO 3 as follows:

Name AP Chemistry September 30, 2013

10.3. The Half-Reaction Method for Balancing Equations. 482 MHR Unit 5 Electrochemistry

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry

Oxidation Numbers, ox #

(a) (i) Explain what is meant by the terms transition element, complex ion and ligand,

Calculations In Chemistry

Reactions. Chapter 3 Combustion Decomposition Combination. Chapter 4 Reactions. Exchange reactions (Metathesis) Formation of a precipitate

Transcription:

Name Chem 163 Section: Team Number: ALE 23. Balancing Redox Reactions (Reference: Section 4.5 (pp. 158 166) and 21.1 Silberberg 5 th edition) How does one balance a reaction for both matter and charge? The Model Oxidationreduction or Redox reactions involve the transfer of one or more electrons from one chemical species to another. Redox reactions are involved in the corrosion of metals, the combustion of fuels, the generation of electricity from batteries and many biological processes including cellular respiration and photosynthesis. An understanding of redox chemistry is essential in the design of new kinds of batteries, increasing efficiency in fuel combustion, the prevention of corrosion, etc. Recall from Chem 161 (Sec. 4.5 in Silberberg), the oxidation number of an atom is the apparent charge the atom would have if each of its bonding electrons were assigned to the more electronegative atom in each bond. Oxidation numbers are useful in determining the substance oxidized (L.E.O. = Loss of Electron(s) is Oxidation) and the substance reduced (G.E.R. = Gain of Electron(s) is Reduction). Hence, the substance that is oxidized loses electrons and therefore serves as a reducing agent since it provides electrons to another atom thereby causing that atom to be reduced. The species being reduced serves as the oxidizing agent because it removes electrons from another substance, thereby causing that substance to be oxidized. Rules to Assign Oxidation Numbers 5 Oxidation numbers are often written above the atomic symbol: H NO3 F2 CH4 H O2 1) In free elements (i.e., in the uncombined state), each atom has an oxidation number of zero. e.g. Al, S 8, Na, Fe, H 2, O 2, N 2, Cl 2 each have an O.N. = 0 2) Since fluorine is the most electronegative element, the oxidation number of fluorine in all of its compounds is 1. 3) The oxidation number of oxygen in most compounds (called oxides ) is 2. In peroxides (e.g. H 2 O 2 ), the oxidation number of oxygen is 1. In superoxides (e.g. O 2 1 ), the oxidation number of oxygen is ½. 4) The oxidation number of hydrogen is +1, except when it is bonded to metals in binary compounds (e.g. metallic hydrides: LiH, MgH 2 ), in which its oxidation number is 1. 5) Group IA and IIA metals form compounds in which the metal atoms have oxidation numbers of +1 and +2, respectively. 6) The sum of the oxidation numbers of all the atoms in a species must be equal to the net charge of the species. e.g. The sum of the O.N. s of a molecular substance is zero: H2 O CH4 Cl F5 NO2 The sum of the O.N. s of the atoms in a polyatomic equals the charge of the ion: 0 4 4 2 5 4 6 2 3 ( O H) (SO4) (NO2 ) Page 1 of 6

Key Questions 1. The substances oxidized and reduced may not be obvious in the following redox reaction: 8 H + (aq) + Cr 2 O 7 (aq) + 3 SO 3 (aq) 2 Cr 3+ (aq) + 3 SO 4 (aq) + 4 H 2 O (l) a. Write the oxidation numbers above each atomic symbol on the left and right sides of the reaction above. b. Does the oxidation number of any atom increase? Is that species the oxidizing agent or the reducing agent? c. Does the oxidation number of any atom decrease? Is that species the oxidizing agent or the reducing agent? d. Which species is being oxidized? e. Which species is being reduced? Exercises 2. Write the oxidation number above each symbol in the following compounds or ions. a. KBr b. BrF 3 c. HBrO 3 d. CBr 4 e. MnO 4 1 f. Mn 2 O 3 g. KMnO 4 3. Assign oxidation numbers to each atom in the following reaction and then identify the oxidizing agent, reducing agent, the substance oxidized and the substance reduced. NO 3 1 (aq) + 4 Zn (s) + 7 OH 1 (aq) + 6 H 2 O (l) 4 Zn(OH) 4 (aq) + NH 3 (aq) Oxidizing agent: Substance oxidized: Reducing agent: Substance reduced: Page 2 of 6

The Model: Balancing a Redox Reaction in an Acidic Solution Example 1. Copper(I) chloride and arsenic precipitate out of solution when copper metal is added to tetraarsenic hexoxide in an acidic solution of chloride. A. Write unbalanced reaction: Cu + As 4 O 6 + Cl CuCl + As (Acidic condition: when balanced, H + will be reactant or a product.) B. Assign oxidation numbers and determine what s oxidized and reduced: 0 3+ 1+ 0 Cu + As 4 O 6 + Cl CuCl + As oxidation reduction Reducing agent: Cu. Oxidizing agent: As 4 O 6 C. Determine the halfreactions: Oxidation: Cu + Cl CuCl Reduction: As 4 O 6 As D. Balance all elements except O & H: Reduction: As 4 O 6 4 As E. Use H 2 O to balance oxygen atoms: Reduction: As 4 O 6 4 As + 6 H 2 O F. Use H + to balance hydrogen atoms: Reduction: 12 H + + As 4 O 6 4 As + 6 H 2 O G. Use e to balance charge: Oxidation: Cu + Cl CuCl + e Reduction: 12 e + 12 H + + As 4 O 6 4 As + 6 H 2 O H. Conserve # of e oxidation = 12 Cu + 12 Cl 12 CuCl + 12 e (# e lost = # e gained) reduction = 12 e + 12 H + + As 4 O 6 4 As + 6 H 2 O I. Combine the ½reactions: 12 Cu + As 4 O 6 + 12 Cl + 12 H + + 12 e 12 CuCl + 4 As + 6 H 2 O + 12 e J. Simplify algebraically to get the simplest whole number ratio and check to see if balanced by both charge and mass. Key Questions 12 Cu + As 4 O 6 + 12 Cl + 12 H + 12 CuCl + 4 As + 6 H 2 O 4. a. In step A of the model why was the product written as CuCl and not Cu + + Cl? b. According to the Model, how is the number of oxygen atoms balanced in each halfreaction? c. How is the number of hydrogen atoms balanced in each halfreaction? d. How is charge balanced in each halfreaction? Page 3 of 6

5 a. Why are the stoichiometric coefficients of the oxidation half reaction multiplied by 12 in Step H of example 1? b. True or False: An oxidation reaction must occur at the same time that a reduction reaction takes place. Justify your response. Exercise 6. The permanganate ion, MnO 4, reacts with oxalate, C 2 O 4, to yield manganese (IV) oxide and carbonate, CO 3. Use the halfreaction method to balance this reaction in acidic conditions. Show your work. The Model: Balancing a Redox Reaction in an Basic Solution The reaction you balanced in exercise #6, above, between the permanganate ion and the oxalate ion occurs in basic solution not in acidic solution! To balance a redox reaction in basic solution follow the steps used to balance an equation in acidic conditions (i.e. steps A J on page 3) and then follow steps K L, below. Example 2. In a basic solution, permanganate reacts with oxalate to yield manganese(iv) oxide and carbonate. This is what you should have ended up with in exercise #6, above, after completing steps A J on page 3: To balance this equation in basic solution K. Make the solution basic by adding OH to each side: L. Neutralize the H+ and OH to create water: + 2 H 2 O 2 MnO 2 + 6 CO 3 + 2 H 2 O + 4 OH 2 MnO 2 + 6 CO 3 + 2 H 2 O + 4 OH 2 MnO 2 + 6 CO 3 M. simplify algebraically, canceling any terms (e.g. water) that appear on both sides: + 4 H + + 4 H + + 4 OH + 4 H 2 O + 4 OH 2 MnO 2 + 6 CO 3 + 2 H 2 O Page 4 of 6

Key Question 7. Why in Step K of Example 2 is 4 OH added to each side of the reaction? (Such a step did not take place in Example 1. What s different about Example 2?) Exercises Balance the following redox reactions by using the halfreaction method. Show your work. 8. Many metals dissolve in hydrochloric acids. Copper does not. To dissolve copper, one must use an oxidizing acid, such as nitric acid. Gold, however, does not dissolve even in nitric acid. To dissolve the unreactive metal, one must place gold in aqua regia, which is a mixture of concentrated nitric acid and concentrated hydrochloric acid. The unbalanced chemical equation for that process is: Au + NO 3 + Cl AuCl 4 + NO (acidic) 9. Zinc is a reactive metal that dissolves readily in hydrochloric or in nitric acid. But zinc also dissolves in basic solutions containing the nitrate ion. The unbalanced chemical equation for that process is: Zn + NO 3 Zn(OH) 4 + NH 3 (basic) Page 5 of 6

10. A convenient way to volumetrically analyze solutions of sulfite (colorless) is to titrate them with an acidified standardized dichromate solution (orange). SO 3 + Cr 2 O 7 Cr 3+ + SO 4 (acidic) The resulting chromium (III) sulfate solution is green. Suppose 25.00 ml of a sodium sulfite solution is transferred to an Erlenmeyer flask and acidified. It is then titrated with 0.0628 M K 2 Cr 2 O 7 (aq). When 22.38 ml of the dichromate solution has been added, the first presence of orange indicates left over dichromate and the endpoint has been reached. What is the molarity of the original Na 2 SO 3 (aq) solution? Show your work. Page 6 of 6