Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy

Similar documents
An introduction to X- ray photoelectron spectroscopy

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

X-Ray Photoelectron Spectroscopy (XPS)

Electron Spectroscopy

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS)

IV. Surface analysis for chemical state, chemical composition

Electron Spettroscopies

Lecture 7 Chemical/Electronic Structure of Glass

Methods of surface analysis

Fig Photoemission process.

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

PHOTOELECTRON SPECTROSCOPY (PES)

X-Ray Photoelectron Spectroscopy (XPS)-2

Photoelectron Spectroscopy. Xiaozhe Zhang 10/03/2014

X-ray Photoelectron Spectroscopy (XPS)

Core Level Spectroscopies

Bonds in molecules are formed by the interactions between electrons.

Lecture 20 Auger Electron Spectroscopy

X-Ray Photoelectron Spectroscopy (XPS)-2

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Lecture 5-8 Instrumentation

Lecture 17 Auger Electron Spectroscopy

He, Ne, and Ar have shells.

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES)

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

Synthesis of Cu/Ni thin film by thermal evaporation technique and its XPS study

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Ultraviolet Photoelectron Spectroscopy (UPS)

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis

Low Energy Electrons and Surface Chemistry

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Group Members: Your Name In Class Exercise #6. Photon A. Energy B

Photon Interaction. Spectroscopy

Valence and Core Electron Spectra of Mg in MgO in Evoporated Thin Films

Shell Atomic Model and Energy Levels

MODERN TECHNIQUES OF SURFACE SCIENCE

X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry

Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry

Probing Matter: Diffraction, Spectroscopy and Photoemission

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

X-ray Energy Spectroscopy (XES).

Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals

Molecular Orbital Theory

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ELECTRON EMISSION SPECTROSCOPY

Photoelectron Peak Intensities in Solids

Lecture 22 Ion Beam Techniques

Energy Spectroscopy. Excitation by means of a probe

Appearance Potential Spectroscopy

The photoelectric effect

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Photoelectron Spectroscopy

Energy Spectroscopy. Ex.: Fe/MgO

5.8 Auger Electron Spectroscopy (AES)

Surface Analysis - The Principal Techniques

X-Ray transitions to low lying empty states

The Use of Synchrotron Radiation in Modern Research

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Recommendations for abbreviations in surface science and chemical spectroscopy. (1) The electron, photoelectron and related spectroscopies

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64)

Ma4: X-ray photoelectron spectroscopy (XPS)

QUESTIONS AND ANSWERS

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Electron and electromagnetic radiation

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

Chapter 7 Introduction to Spectroscopy

8.6 Relaxation Processes

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1)

Particle nature of light & Quantization

MSE 321 Structural Characterization

An Introduction to Auger Electron Spectroscopy

Auger Electron Spectroscopy (AES)

MS731M: Chemical Analysis of Materials

Lecture 23 X-Ray & UV Techniques

7. Electron spectroscopies

U N I T T E S T P R A C T I C E

EDS User School. Principles of Electron Beam Microanalysis

Theoretical approach to estimate radiation damage within FEL irradiated samples. Beata Ziaja

INTERACTIONS OF RADIATION WITH MATTER

XPS o ESCA UPS. Photoemission Spectroscopies. Threshold Spectroscopies (NEXAFS, APS etc ) The physics of photoemission.

THE NATURE OF THE ATOM. alpha particle source

Surface Analysis - The Principal Techniques

Photoelectron Spectroscopy

Table 1: Residence time (τ) in seconds for adsorbed molecules

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

An Introduction to XAFS

X-ray Photoelectron Spectroscopy/ Electron spectroscopy for chemical analysis (ESCA), By Francis Chindeka

Characteristics and Properties of Synchrotron Radiation

Photoionized Gas Ionization Equilibrium

Lecture 10. Transition probabilities and photoelectric cross sections

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Photoemission Spectroscopy: Fundamental Aspects

Photoemission Spectroscopy

Transcription:

Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy

653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies cture 2. Ultraviolet photoelectron spectroscopy: introduction cture 3-4. Electron spectroscopies: experimental methods cture 5-7. Interpretation of UPS, complications, computational methods cture 8-12. XPS: spectra, interpretation, basic theory of photoelectron spectroscopy

Lecture 13-15: Complications of photoemission, many body effects Lecture 16-17: Auger electron spectroscopy Lecture 18-19: Electron spectroscopy case studies: evolution of metallicity, C60, conductivity Lecture 20-21: Electron spectroscopy case studies: surfaces Lecture 22-23: Electron spectroscopy case studies: solids, electronic structure Lecture 24-25: Electron spectroscopy case studies: catalysis

Lecture 26-27: Electron spectroscopy case studies: monolayers, LBs Lecture 28-29: Electron energy loss spectroscopy of core levels Lecture 30-31: Electron energy loss spectroscopy of molecules and surfaces Lecture 32-33: Bremstrahlung isochromat spectroscopy Lecture 34: Electron spectroscopy with advanced light sources Lecture 35: Electron spectroscopy: current research

ferences Hufner, Photoelectron Spectroscopy, Springer-Verlag, Berlin, 1995. C. Smith, Surface Analysis by Electron Spectroscopy, Plenum, New Yor 94. R. Bundle and A. D. Baker (Ed.), Electron Spectroscopy, Vol. 2,, Academi w York, 1978. iggs and Seah, Practical Surface Analysis, John Wiley, New York, 1983.

J. Berkowitz, Photoabsorption, Photoionization and Photoelectron Spectroscopy, Academic Press, New York T.A. Carlson, Photoelectronand Auger Spectroscopy, Plenum Press, New York, 1975 D. A. Shirley, Ed., Electron Spectroscopy, North-Holland, Amsterdam, 1972. K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules, North-Holland, Amsterdam, 1969. Reviews, papers

Broad class of spectroscopic techniques, collectively called electron spectroscopy. In general terms, electron spectroscopy can be defined as the energy analysis of electrons ejected or reflected from materials. All of these spectroscopic techniques yield information on the ELECTRONIC STRUCTURE.

There are, generally five techniques collectively called electron spectroscopy

X-ray photoelectron spectroscopy (XPS) Ultraviolet photoelectron spectroscopy (UPS) Aüger electron spectroscopy (AES) Electron energy loss spectroscopy (EELS) Inverse photoemission spectroscopy (IPS)

There are a range of techniques in each of these UPS Photon source variation He I 21.2 ev He II 40.8 ev Ne I Synchrotron radiation

UPS Variations of the same basic technique One photon spectroscopy Solids Gases Gas cell Molecular beams

Photoelectron-photoion coincidence spectroscopy Zero-kinetic energy photoelectron spectroscopy Multiphoton photoelectron spectroscopy Photodetachment spectroscopy..

Structure and Properties of Matter Spectroscopy Scattering Physical Properties Spectroscopy (pre-1965) Absorption Magnetic Mass

Spectroscopy using electrons e + M +, M 2+ E e + M + M + Current I 4 I 3 I 2 I 1 Electron KE Ionization efficiency curves Detector

h + M + Detecto M + current I 1 I 2 I 3 I 4 Photon Energy

h + M M + + e h Constant + (No M 2+, generally) M + + e Photoelectron Spectroscopy Photoelectric effect Early experiments in 1887 Detector KE h = KE + 1905

Photoion can be excited M + h M + (E int ) + e elec vib rot h -I -E int KE of the electron

Conservation of momentum requires that excess energy is partitioned in inverse proportion to the masses. Excited ionic states e I 1 * h M + I 1 M I 2 E int I p h

Electron and ion separates with equal momenta. mu = MU The relative velocity, V = u + U = U (1+ M/m) = u (1+ m/m) The kinetic energies, ½ MU 2 = 1 m MV 2 m+m 2M ½ mu 2 = 1 m MV 2 2m m+m

h - (I p + E int ) h - KE KE I p + E int h -KE 1 IP 1 h -KE 2 IP 2 h -KE 3 IP 3.. E int o h - KE I p Vertical adiabatic E r e

0 10 100 0000 Depth of analysis depends on photon energy He I 21.2 ev 2 1 P 1 1 S He II 40.8 ev 2 P 1 S of He + 3 / Al K 1, 2 1486.6 ev 2 P 2, 1 / 2 1 S Mg K 1,2 1253.6 ev Na K 1, 2 1041.0 ev Si K 1, 2 1739.5 ev 1000 Core Valence uv Hard X rays Soft X rays

Aüger electron e h e h Photoemission X-ray fluorescence Aüger process

e e Vac 2, 3 (Z) L 1 (Z) L 2, 3 (z+ z) K(Z) Neutral atom Photo emission Electronic transition Coulomb field redistribution Aügur electron emission Final state

E K, L 1, L2, 3 = E k -E L1 - E L 2, 3 E ABC (Z) = E A (Z) - ½ [ E B (Z) + E B (Z+1) ]- ½ [ E C (Z) + E C (Z+1) E s are the binding energies. E ABC K L 1 L 2, 3, K L 1 V, KVV Intense Auger intensities if the valence electron density is high. Fluorescence efficiency increases with transition energy. Fluorescence and Auger are comparable when ~, ev.

VALENCE SHELL PHOTOELECTRON SPECTROSCOPY

Counts / sec ( A ) ( B ) M + Ionization Energy ( 1 ) ( 2 ) ( 3 ) M ( C ) M + ( 3 ) ( 2 ) ( 1 ) I 1 I 2 I 3 M

INTERNUCLEAR DISTANCE

P g non bonding 2345 to 2191 cm -1 P u bonding 2345 to 1850 cm -1 S u weakly antibonding 2345 to 2397 cm -1 E v = E o + e (v + ½) - e x e (v + ½) 2 D e = 2 / 4 e x e

HeI UPS of H 2 Vibrations and Rotations!

ORE LEVEL PHOTOELECTRON SPECTROSCOPY

XPS-spectra of the ls core levels of Li, Be, B, C, N, O, F (from S. Hüfner).

Counting Rate Binding energy ev

Counting Rate Chemical Shift E B =291.2eV

INSTRUMENTATION

Simplest spectrometer

To diffusion pump metal shields h (584 Å) Gas sample Electro countin system

Synchrotron Radiation and XPS ELECTRON BEAM Layout of the synchrotron radiation laboratory at DORIS.