An introduction to X- ray photoelectron spectroscopy

Similar documents
Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS)

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

IV. Surface analysis for chemical state, chemical composition

Electron Spettroscopies

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Electron Spectroscopy

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

Inelastic soft x-ray scattering, fluorescence and elastic radiation

X-ray Photoelectron Spectroscopy (XPS)

Methods of surface analysis

Synthesis of Cu/Ni thin film by thermal evaporation technique and its XPS study

Lecture 7 Chemical/Electronic Structure of Glass

Photoelectron Spectroscopy. Xiaozhe Zhang 10/03/2014

X-Ray Photoelectron Spectroscopy (XPS)-2

Core Level Spectroscopies

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

X-Ray Photoelectron Spectroscopy (XPS)-2

Bonds in molecules are formed by the interactions between electrons.

Photon Interaction. Spectroscopy

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES)

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis

Fig Photoemission process.

Ultraviolet Photoelectron Spectroscopy (UPS)

PHOTOELECTRON SPECTROSCOPY (PES)

Probing Matter: Diffraction, Spectroscopy and Photoemission

He, Ne, and Ar have shells.

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Low Energy Electrons and Surface Chemistry

Lecture 5-8 Instrumentation

Energy Spectroscopy. Excitation by means of a probe

8.6 Relaxation Processes

Group Members: Your Name In Class Exercise #6. Photon A. Energy B

Shell Atomic Model and Energy Levels

Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals

Lecture 17 Auger Electron Spectroscopy

Lecture 20 Auger Electron Spectroscopy

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

X-ray Energy Spectroscopy (XES).

ELECTRON EMISSION SPECTROSCOPY

Molecular Orbital Theory

X-Rays, Electrons and Lithography: Fundamental Processes in Molecular Radiation Chemistry

Chapter 7 Introduction to Spectroscopy

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

MODERN TECHNIQUES OF SURFACE SCIENCE

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Auger Electron Spectroscopy (AES)

The Use of Synchrotron Radiation in Modern Research

MSE 321 Structural Characterization

Electron and electromagnetic radiation

The photoelectric effect

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

Characteristics and Properties of Synchrotron Radiation

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

Lecture 22 Ion Beam Techniques

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

Valence and Core Electron Spectra of Mg in MgO in Evoporated Thin Films

EDS User School. Principles of Electron Beam Microanalysis

Transition probabilities and photoelectric cross sections

Photoelectron Peak Intensities in Solids

THE NATURE OF THE ATOM. alpha particle source

QUESTIONS AND ANSWERS

Energy Spectroscopy. Ex.: Fe/MgO

Skoog Chapter 6 Introduction to Spectrometric Methods

An Introduction to Auger Electron Spectroscopy

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry

Lecture 23 X-Ray & UV Techniques

Photoelectron Spectroscopy

Surface Analysis - The Principal Techniques

Units and Definition

CHEM Course web page. Outline for first exam period

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Appearance Potential Spectroscopy

Photoionized Gas Ionization Equilibrium

Chemistry (

Atomic Theory and Periodic Trends Practice AP Chemistry Questions

7. Electron spectroscopies

Spectroscopy at nanometer scale

U N I T T E S T P R A C T I C E

Classification of spectroscopic methods

5.8 Auger Electron Spectroscopy (AES)

PHOTOELECTRON SPECTROSCOPY PROBLEMS:

Surface Analysis - The Principal Techniques

CHEM 1311A. E. Kent Barefield. Course web page.

Photoelectron Spectroscopy

Recommendations for abbreviations in surface science and chemical spectroscopy. (1) The electron, photoelectron and related spectroscopies

Ma5: Auger- and Electron Energy Loss Spectroscopy

Photoemission Spectroscopy: Fundamental Aspects

Boltzmann Distribution

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64)

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Periodic Relationships

Lecture 10. Transition probabilities and photoelectric cross sections

Transcription:

An introduction to X- ray photoelectron spectroscopy

X-ray photoelectron spectroscopy belongs to a broad class of spectroscopic techniques, collectively called, electron spectroscopy. In general terms, electron spectroscopy can be defined as the energy analysis of electrons ejected or reflected from materials. All of these spectroscopic techniques yield information on the ELECTRONIC STRUCTURE.

There are, generally five techniques collectively called electron spectroscopy

X-ray photoelectron spectroscopy (XPS) Ultraviolet photoelectron spectroscopy (UPS) Aüger electron spectroscopy (AES) Electron energy loss spectroscopy (EELS) Inverse photoemission spectroscopy (IPS)

There are a range of techniques in each of these UPS Photon source variation He I 21.2 ev He II 40.8 ev Ne I Synchrotron radiation

UPS Variations of the same basic technique One photon spectroscopy Solids Gases Gas cell Molecular beams

Photoelectron-photoion coincidence spectroscopy Zero-kinetic energy photoelectron spectroscopy Multiphoton photoelectron spectroscopy Photodetachment spectroscopy..

Structure and Properties of Matter Spectroscopy Scattering Physical Properties Spectroscopy (pre-1965) Absorption Magnetic Mass

Spectroscopy using electrons e + M +, M 2+ E e + M + M + Current I 4 I 3 I 2 I 1 Electron KE Ionization efficiency curves Detector

hν + M + Detecto M + current I 1 I 2 I 3 I 4 Photon Energy

hν + M M + + e hν Constant + (No M 2+, generally) M + + e Photoelectron Spectroscopy Photoelectric effect Early experiments in 1887 Detector KE hν = KE + φ 1905

Photoion can be excited M + hν M + (E int ) + e elec vib rot hν -I -E int KE of the electron

Conservation of momentum requires that excess energy is partitioned in inverse proportion to the masses. Excited ionic states e I 1 * hν M + I 1 M I 2 E int I p hν

Electron and ion separates with equal momenta. mu = MU The relative velocity, V = u + U = U (1+ M/m) = u (1+ m/m) The kinetic energies, ½ MU 2 = 1 m MV 2 m+m 2M ½ mu 2 = 1 m MV 2 2m m+m

hν - (I p + E int ) KE hν - KE I p + E int hν -KE 1 IP 1 hν -KE 2 IP 2 hν -KE 3 IP 3.. E int o hν - KE I p Vertical adiabatic E r e

0 10 100 0000 Depth of analysis depends on photon energy He I 21.2 ev 2 1 P 1 1 S He II 40.8 ev 2 P 1 S of He + 3 / Al K α1, 2 1486.6 ev 2 P 2, 1 / 2 1 S Mg K α1,2 1253.6 ev Na K α1, 2 1041.0 ev Si K α1, 2 1739.5 ev 1000 Core Valence uv Hard X rays Soft X rays

Aüger electron e hν e hν Photoemission X-ray fluorescence Aüger process

e e Vac 2, 3 (Z) L 1 (Z) L 2, 3 (z+ z) K(Z) Neutral atom Photo emission Electronic transition Coulomb field redistribution Aügur electron emission Final state

E K, L 1, L2, 3 = E k -E L1 - E L 2, 3 E ABC (Z) = E A (Z) - ½ [ E B (Z) + E B (Z+1) ]- ½ [ E C (Z) + E C (Z+1) E s are the binding energies. E ABC K L 1 L 2, 3, K L 1 V, KVV Intense Auger intensities if the valence electron density is high. Fluorescence efficiency increases with transition energy. Fluorescence and Auger are comparable when Ε ~ 10,000 ev.

VALENCE SHELL PHOTOELECTRON SPECTROSCOPY

Counts / sec ( A ) ( B ) M + Ionization Energy ( 1 ) ( 2 ) ( 3 ) M ( C ) M + ( 3 ) ( 2 ) ( 1 ) I 1 I 2 I 3 M

INTERNUCLEAR DISTANCE

P σ g non bonding 2345 to 2191 cm -1 Pπ u bonding 2345 to 1850 cm -1 Sσ u weakly antibonding 2345 to 2397 cm -1 E v = E o + ω e (v + ½) - ω e x e (v + ½) 2 D e = ω 2 / 4 ω e x e

HeI UPS of H 2 Vibrations and Rotations!

ORE LEVEL PHOTOELECTRON SPECTROSCOPY

XPS-spectra of the ls core levels of Li, Be, B, C, N, O, F (from S. Hüfner).

Counting Rate Binding energy ev

Counting Rate Chemical Shift E B =291.2eV

INSTRUMENTATION

To diffusion pump µ metal shields hν (584 Å) Gas sample Electro countin system

Synchrotron Radiation and XPS ELECTRON BEAM Layout of the synchrotron radiation laboratory at DORIS.

References 1. S. Hufner, Photoelectron Spectroscopy, Spinger-Verlag, Berlin, 1995. 2. H. Windawi and F. F. L. Ho, Ed. Applied Electron Spectroscopy for Chemical Analysis John Wiley & Sons, New York, 1982.. 3. D. Briggs and M. P. Seah, Ed. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons, New York, 1983.

4. G. C. Smith, Surface Analysis by Electron Spectroscopy Measurement and Interpretation Plenum Press, New York, 1994. 5. C. R. Brundle and A. D. Baker, Ed., Electron Spectroscopy: Theory, Techniques and Applications, Vol. 1-5, Academic press, London, 1978. 6. D. Briggs, Ed., Handbook of X- ray and Ultraviolet Photoelectron Spectroscopy, Heyden, London, 1977.

7. K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules, North-Holland, Amsterdam, 1969. 8. D. A. Shirley, Ed., Electron Spectroscopy, North-Holland, Amsterdam, 1972.