8L Earth and Space. recommended teaching time hours

Similar documents
ASTRONOMY Merit Badge Requirements

Directed Reading. Section: Viewing the Universe THE VALUE OF ASTRONOMY. Skills Worksheet. 1. How did observations of the sky help farmers in the past?

Unit 7L The solar system and beyond. About the unit. Expectations. Science Year 7. Where the unit fits in

GRADE 8: Earth and space 1. UNIT 8E.1 8 hours. The Solar System. Resources. About this unit. Previous learning. Expectations

CHAPTER 2 Strand 1: Structure and Motion within the Solar System

Solar System Test - Grade 5

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system.

Planets and Moons. unit overview

the songg for Science.

MS-ESS1-1 Earth's Place in the Universe

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe

Academic Year Second Term. Science Revision Sheet. Grade

UNIT 1: EARTH AND THE SOLAR SYSTEM.

How Astronomers Learnt that The Heavens Are Not Perfect

MIDTERM PRACTICE EXAM ANSWERS

Astronomy Review. Use the following four pictures to answer questions 1-4.

SCIENCE Year 5. Principles of Science:

Test 1 Review Chapter 1 Our place in the universe

PHYS 160 Astronomy Test #1 Fall 2017 Version B

Earth in Space. The Sun-Earth-Moon System

Topic 1: Celestial Objects, phenomena, and interactions are important to people in many different ways.

3. The diagram below shows the Moon at four positions in its orbit around Earth as viewed from above the North Pole.

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

A. the spinning of Earth on its axis B. the path of the Sun around Earth

Planet Earth. Part 2

YEAR 5 EARTH AND SPACE PLANNING. History: history of astronomy

Activity 95, Universal Gravitation! Issues & Earth Science: Student Book!!

Question 1. What motion is responsible for the apparent motion of the constellations (east to west) across the sky?

Science Year 5 and 6

1UNIT. The Universe. What do you remember? Key language. Content objectives

Astronomy Section 2 Solar System Test

Griffith Observatory Field Trip Guide

What Objects Are Part of the Solar System?

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings!

GRADE 6: Earth and space 1. UNIT 6E.1 12 hours. The movement of the Earth and the Moon. Resources. About this unit. Previous learning.

Sample Assessment Material Time: 2 hours

GCSE ready intervention tasks

Astronomy#2 - Notebook

Planet Time to orbit the Sun (Earth years) Distance from the Sun (million km) Mercury Venus Earth Mars 2.

refractors satellite electromagnetic radiation

4. What verb is used to describe Earth s

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

A. The moon B. The sun C. Jupiter D. Earth A. 1 B. 2 C. 3 D. 4. Sky Science Unit Review Konrad. Here is a selection of PAT style questions.

Name Regents Review Packet #2 Date

Astronomy Mission Instructions Computer Class

Earth in Space. Guide for Reading How does Earth move in space? What causes the cycle of seasons on Earth?

GRADE 7: Physical processes 3. UNIT 7P.3 8 hours. Magnetism. Resources. About this unit. Previous learning. Expectations

TEACHER Worksheet: Phases of the Moon and Tides

Seasonal Path of the Sun and Latitude

Planetary Science Unit Map Grade 8

continued Before you use the slides you might find the following websites useful for information on the satellite and also space in general: The

SC.8.E.5.9. Summer and Winter Gizmo


Review. Knowledge. (d) The planet s gravitational force on satellite B is. half the gravitational force on satellite A.

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source

What is in outer space?

Simulating the Solar System

By Helen and Mark Warner

Name: Master # 1. Date: Moon Recording Sheet. Date and Time. Date and Time. Edmonton Public Schools, 1997 Permission to copy granted to the user.

TEACHER PAGE CELEBRATING SPACE: A QUICK HISTORY

Sun, Earth and Moon Model. Build an Earth-Moon-Sun mobile to learn about how they orbit. Space Awareness, Leiden Observatory. iau.

Parenting Tip of the Month. April. Lower Elementary Teachers

Practice Questions: Seasons #1

GRADE 5: Physical processes 4. UNIT 5P.4 5 hours. Magnetic forces. Resources. About this unit. Previous learning. Expectations

Scott Foresman Science 4.17

Unit 1: The Earth in the Universe

AST101IN Final Exam. 1.) Arrange the objects below from smallest to largest. (3 points)

2.1 Patterns in the Night Sky

Universal Gravitation

of stars constellations. Perhaps you have seen The Big Dipper, Taurus the bull, Orion the hunter, or other well-known star groups.

Investigations in Earth and Space Science Semester Review: Unit 1 and Unit 2

L ESSON P LAN:DETERMINING THE E FFECT OF D ISTANCE (PART 1) AND I NCLINATION (PART 2)

Astronomy Practice Test

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

DRAFT. Caption: An astronaut climbs down a lunar module on the surface of the Moon. <Insert figure 1.4 here; photograph of the surface of Mars>>

Grades 3-6 Education Guide

Q2 S PA C E S C I E N C E

SPI Use data to draw conclusions about the major components of the universe.

Space: Cross-Curricular Topic : Year 5/6

Merrillville Community Planetarium Kindergarten to Fifth Grade Programs By Gregg L. Williams February 1, 1983 Revised April 10, 2014

How Does Earth Rotate and Revolve in Space?

How can we use information to solve a societal problem?

7.RP.A.2 Recognize and represent proportional relationships between quantities.

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons.

Subject: Earth Science Grade: 10 Unit #: 5 Title: Astronomy

Grades K 2 Education Guide

Astronomy 101: 9/18/2008

Exercise 1: Earth s Moon

Chapter 19 Exploring Space. I. Fill in the blank

Unit 6 Lesson 1 How Do the Sun, Earth, and Moon Interact? Copyright Houghton Mifflin Harcourt Publishing Company

CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Teacher

Elementary Science: Curriculum Map for Grade 5

Name: Exam 1, 9/30/05

Missions mars. Beyond the Book. FOCUS Book

SPACE REVIEW FOR SOL (6 th GRADE TOPIC)

Lesson 5 Why the Earth s formation gives us seasons

Chapter 2 Study Guide

End-of-chapter test Chapter 2 Foundation

Transcription:

8L Earth and Space recommended teaching time 7.5-10 hours Looks at stars and galaxies, and the distances involved when studying space. Areas covered: This unit covers the following statements from the UK National Curriculum for Science (2013) Non-contact forces: gravity forces acting at a distance on Earth and in space, forces between magnets and forces due to static electricity. Magnetic poles, attraction and repulsion Magnetic fields by plotting with compass, representation by field lines Earth s magnetism, compass and navigation Gravity force, weight = mass x gravitational field strength (g), on Earth g = 10 N/Kg, different on other planets and stars; gravity forces between Earth and Moon and between Earth and Sun (qualitative only) Our Sun as a star, other starts in our galaxy, other galaxies The seasons and the Earth s tilt, day length at different times of year, in different hemispheres The light year as a unit of astronomical distance Prior knowledge from From KS2 most students will be able to: KS2 Describe the movement of the Earth and other planets relative to the Sun (Year 5) Describe the movement of the Moon relative to the Earth (Year 5) Describe the Sun, Earth and Moon as approximately spherical bodies (Year 5) Use the idea of the Earth s rotation to explain day and night (Year 5) From previous units, most students will be able to: Describe the difference between weight and mass (7K) Recall the direction in which gravity acts (7K) In this Unit taken from Exploring science teacher notes Topic 8La briefly revises KS2 work on the Earth, Sun and Moon. It looks at how observations are made and the Solar System models that have been used over time to explain observations. The Literacy & Communication pages look at presenting arguments. Topic 8Lb looks at the season and their causes Topic 8Lc describes the magnetic fields of bar magnets and of the Earth. Topic 8Ld describes how to calculate weight from mass and gravitational field strength, and looks at the role of gravity in space. The Working Scientifically pages look at making comparisons using ratios and percentages. Levelness for this topic L3 Topic 8Le looks at stars and galaxies, and the distance involved when studying space.

Describe differences in the seasons in terms of day length and the height of the Sun. L4 Describe how we see the moon Describe the positions of the Earth and planets in the Solar System Describe the positions of the Earth and planets in the Solar system Explain the changes in day length and height of the Sun in terms of the tilt of the Earth s axis. State what is meant by a magnetic field and recall the shape of the field of a bar magnet Describe the effect of the Earth s magnetic field on compass needles Explain how to arrange two magnets so that they attract or repel each other Recall the direction of a magnet s magnetic field Recall the direction in which gravity acts State the meaning of: Sun, star, galaxy, Universe, constellation Describe the Milky Way L5 Describe some ways of investigating the planets Compare the geocentric and heliocentric models of the Solar System. Use a model to explain why we see phases of the Moon Use a model to explain the changes in the seasons. Use a model to explain why the height of the Sun at noon and hours of daylight vary with latitude. Explain how a compass can be used together with maps for navigation Explain how a plotting compass can be used to show the shape and direction of a magnetic field Describe the Earth s magnetic field and explain why a magnetic compass needle points north Describe the shape of the magnetic field between two bar magnets in different arrangements Recall the factors that affect the strength of gravity Stat the meaning of gravitational field strength Explain why the weight of an object changes if taken to the Moon, but not its mass Use gravitational field strength to calculate weights Explain that stars in a constellation only appear to be close to each other Compare the relative sizes and distances of objects in space Describe the different shapes of galaxies and relate the view of the sky to a planet s position in a galaxy L6 Explain how technological developments have increased our knowledge of the Solar System Explain why the heliocentric model is our current model of the Solar System Use a model to explain the pattern of light and dark at the poles.

Obtain information from secondary sources to investigate the relationships in astronomical data Recall that planets and natural satellites are kept in orbit by gravity Describe how mass and distance affect the strength of gravity Describe how gravity affects bodies in space State the meaning of light years L7 Compare different theories for the origin of the Moon Use a model to explain why we have partial and total solar eclipses Explain the effect of the tilt of the Earth s axis on the energy received from the Sun. Analyse the rotations and axes of other planets to predict annual changes Use ideas about the Earth s magnetic field to explain variation, dip and deviation Describe some ways in which astronomers can detect planets orbiting stars other than the Sun L8 Explain why the speed of a planet changes as it moves around its orbit Working Scientifically focus Literacy and numeracy focus Assessment opportunities In addition to covering a variety of Working Scientifically statements, this unit has a focus on: Present observations and data using appropriate methods, including tables and graphs Interpret observations and data, including identifying patterns and using observations, measurements and data to draw conclusions. Presenting arguments Using ratios to compare quantities Writing one number as a fraction of another and converting fractions to decimals Substituting values into simple formula and solving resulting equations Drawing line graphs and scatter graphs, and using these to draw conclusions SAT style questions Exploring Science EOUT Badger Activity self and peer assessment available here. Literacy and numeracy activities. Alfie test on line GCSE exam style QWC - question, were students will be marked on the good use of English, organisation of information, spelling, punctuation and grammar

Week No The Big Idea Lesson number Learning Objectives Activities Keywords/ H&S L4 1 Changing ideas, introduces the theme of Telescope, space exploring space telescope, space probe, flyby, orbiter, lander, L4-6 2 Gathering the evidence, outlines ways in rover, crewed which scientists explore the Solar System spacecraft. 1 Earth and Space 1) Gathering the evidence Describe how we see the moon Describe the positions of the Earth and planets in the Solar System Describe the positions of the Earth and planets in the Solar system Describe some ways of investigating the planets Compare the geocentric and heliocentric models of the Solar System. Use a model to explain why we see phases of the Moon Explain how technological developments have increased our knowledge of the Solar System Explain why the heliocentric model is our current model of the Solar System Compare different theories for the origin of the Moon Use a model to explain why we have partial and total solar eclipses. L4-6 3 Scientific arguments, looks at how to construct a scientific argument using the context of Galileo vs the Catholic Church L5-7 - 4 Ways of exploring, Students discuss meanings of topic keywords and dis/advantages of different ways of space exploration L5 5 Phases of the moon, demonstrate phases of the moon using a light source, students asked to draw the shapes of the moon when it is illuminated from different angles. L5 6 Eclipses, Demonstrate an eclipse, students discuss lunar/solar eclipses and why eclipses don t happen every month.

2) Seasons Describe differences in the seasons in terms of day length and the height of the Sun. Explain the changes in day length and height of the Sun in terms of the tilt of the Earth s axis. Use a model to explain the changes in the seasons. Use a model to explain why the height of the Sun at noon and hours of daylight vary with latitude. Use a model to explain the pattern of light and dark at the poles. Obtain information from secondary sources to investigate the relationships in 3) Magnetic Earth astronomical data. Explain the effect of the tilt of the Earth s axis on the energy received from the Sun. Analyse the rotations and axes of other planets to predict annual changes. State what is meant by a magnetic field and recall the shape of the field of a bar magnet Describe the effect of the Earth s magnetic L4 1 Hours of Daylight 1, Students are asked to work out the daylight hours each month and draw a bar chart; and to work out which hemisphere the data is for. L4-5 - 2 Hours of daylight 2, students are to investigate if everywhere in the world has more hours of daylight in their summer months than in their winter months and how the latitude affects daylight hours. L4-5 3 Explaining the seasons, Give students only the white cards (the grey ones can be blanked off when copying the worksheet). Ask them to sort the cards and then summarise the information on them. They should then explain the information using ideas about the tilt of the Earth s axis and the way the Sun s rays are concentrated in summer. L5-6 4 Lines of latitude, Worksheet 8Lb-6 explains the connection between the tilt of the Earth s axis and significant lines of latitude, such as the Arctic and Antarctic Circles. L7 5 Concentrated rays, Demonstrate the validity of the concentrated rays explanation for the difference in temperatures between summer and winter, by using three trays of sand inclined at different angles to the same source of light/heat. Temperature differences between the trays can be recorded using normal thermometers, or data logging equipment with heat sensors. L4 1 Field pattern using iron filings, Students find the shape of a magnetic field by placing a sheet of paper over a bar magnet and sprinkling iron fi lings onto the paper. This is easier if the paper is kept horizontal by resting it on two books, with a gap in the middle for the magnet. Students may need help to Light, time, sun, solar system, seasons, axis Bar magnet, magnaprobe, magnetism, magnetic poles

field on compass needles Explain how to arrange two magnets so that they attract or repel each other Recall the direction of a magnet s magnetic field Explain how a compass can be used together with maps for navigation Explain how a plotting compass can be used to show the shape and direction of a magnetic field Describe the Earth s magnetic field and explain why a magnetic compass needle points north Describe the shape of the magnetic field between two bar magnets in different arrangements Use ideas about the Earth s magnetic field to explain variation, dip and deviation. relate the iron fi lings pattern to that obtained with plotting compasses L4-5 2 Field pattern using plotting compasses, Worksheet 8Lc-2 explains how to use plotting compasses to find the shape of a magnetic field. Encourage students to move the compass around above and below the magnet either holding it vertically or observing the dip of the needle to emphasise that the magnetic field is all around the magnet, not just in the plane of the paper L4 3 Homemade compass, Show students how to make their own magnets by the stroking method. This involves repeatedly stroking one end of a bar magnet along a needle or other iron or steel object. Students then make their own magnet and test it by using it to attract paperclips or other iron/steel objects. Steel dressmaking pins can be used, but you may wish to file down sharp points before using them L5 4 Which is the magnet, Have a selection of large nails, some of which are magnetised and some that are not. Twice as many magnetised nails are needed as un-magnetised ones. Label half the magnetised nails A, and half C. Label the un-magnetised nails B. Give each group of students a set of nails and ask them to decide which one is not magnetised. Once they have done this, groups can compare results and explain their reasoning to each other L5 5 Maps and Navigation, Show students an Ordnance Survey map and an orienteering map. Ask them to look at the key on the OS map and find the information for North Points. Ask them to suggest why there is a difference between magnetic north and true north

4) Gravity in Space Recall the direction in which gravity acts Recall the factors that affect the strength of gravity Stat the meaning of gravitational field strength Explain why the weight of an object changes if taken to the Moon, but not its mass Use gravitational field strength to calculate weights Recall that planets and natural satellites are kept in orbit by gravity Describe how mass and distance affect the strength of gravity Describe how gravity affects bodies in space Explain why the speed of a planet changes as it moves around its orbit L5 1 Weight on other planets, Allow students to pick up a set of cereal packets or other containers that are all the same size. Each should be labelled with the name of a planet, and students should be told that these are models to help them to feel what holding up 1 kg of mass would be like on each planet. L4-8 2 ROKIT investigation, Demonstrate the safe use of a model rocket kit. A suitable kit is the ROKIT. Groups of students could use the kit to investigate how the volume of the bottle or the volume of water used affects the maximum height reached by the ROKIT, how the angle of launch or the wind speed affect the range, or how the ROKIT can be streamlined. The ROKIT is accompanied by a booklet showing how to make a clinometer to measure the maximum height, how to make various weather measuring instruments and how teams of students can be organised into a Rocket Range Crew. L4-6 3 Investigating orbits, The AT spreadsheet Investigating orbits provides data about the Solar System which students use to plot graphs to help them to describe relationships in the data. L4-6 4 Selecting the data, The AT spreadsheet Selecting the data provides data about the planets, dwarf planets and some moons in the Solar System. Students are asked to use the data to help them to work out which statements are true. Solar system, mass, gravity, weight L5 5 Ratios and percentages, Worksheet 8Ld-4 provides practice in calculating ratios and percentages. L4-6 6 The Vomit Comet, Worksheet 8Ld-6 provides information and questions on how astronauts train for weightless conditions.

5) Beyond the Solar System State the meaning of: Sun, star, galaxy, Universe, constellation Describe the Milky Way Explain that stars in a constellation only appear to be close to each other Compare the relative sizes and distances of objects in space Describe the different shapes of galaxies and relate the view of the sky to a planet s position in a galaxy State the meaning of light years Describe some ways in which astronomers can detect planets orbiting stars other than the Sun. L5-6 1 What can we find out? Worksheet 8Le-3 provides a set of questions about the Solar System, and other stars and planets. It asks students to sort them into scientific and non-scientific questions, and then to sort the scientific questions into those that can be answered now, those that it may be possible to answer at some time in the future and those that may never be answered. L6-7 - 2 Research spending debate, Ask students to imagine that they are serving on a scientific committee that has to decide how to spend some research money. The committee has to decide which of the following things the money should be spent on: a new large telescope on the ground a new space telescope space probes to visit the moons of Jupiter or Saturn a crewed mission to Mars L5 3 Spending for or against? Worksheet 8Le-4 provides some opinions about spending on space research. Students are asked to say which opinions are for and which are against spending on space, and are then asked to explain which of the opinions they agree with. S L5 4 Debate, There is an opportunity for a debate on Student Book page 8Le Studying space. Refer to Skills Sheet RC 5 from the Year 7 Activity Pack for ideas on how to run a debate L5 Light speed walk, There is a Solar System model in Anchorage (from which the photo of the Sun comes in fi gure A). The Anchorage Light speed Planet Walk is set up so that a person walking at a normal speed will take the same time to travel between the models of the Sun and the planets as light would take in the real Solar System. The AT spreadsheet Investigating orbits includes information on the distance of each planet

from the Sun, which could be used here. 5) Revision 6) Assessment