Hypervalent Iodine(III): Property and Reactivity. Penghao Chen g Dong Group Seminar October, 21 st, 2015

Similar documents
Recent Developments in the Chemistry of Polyvalent Iodine Compounds

Hypervalent (III) iodine chemistry

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Recent Advances in C-B Bond Formation through a Free Radical Pathway

Recent Developments in Alkynylation

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Rising Novel Organic Synthesis

molecules ISSN

General Papers ARKIVOC 2007 (xiii) 28-33

A convenient one-pot synthesis of aryl amines from aryl aldoximes mediated by Koser s reagent

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

Study of Chemical Reactions

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

Aza-Wacker-Type Cyclization. Group Meeting Tuesday, April 19, 2011 William Kuester

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

CHEMISTRY 332 FALL 08 EXAM II October 22-23, 2008

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

Hypervalent Iodine. Diaryl-λ 3 -iodanes vs. diaryliodonium salts (Ar 2 IL) [10-I-3] Dess-Martin periodinane (DMP) General reactivity

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Organic Reactions catalyzed by rhenium carbonyl complexes

Synthesis, Mechanism, and Properties of Cyclopenta-fused Polycyclic Aromatic Hydrocarbons. Chaolumen. Introduction

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Facile and efficient oxidation of sulfides to sulfoxides in water using hypervalent iodine reagents

sp 3 C-H Alkylation with Olefins Yan Xu Dec. 3, 2014

Discussion Addendum for: (Phenyl)[2-(trimethylsilyl)phenyl]iodonium Triflate. An Efficient and Mild Benzyne Precursor

Modern Synthetic Methods

Cambrian Explosion, Complex Eukaryotic Organism, Ozonosphere 3

Iron Catalysed Coupling Reactions

C H Activated Trifluoromethylation

Rh(III)-catalyzed C-H Activation and Annulation via Oxidizing Directing Group. Lei Zhang 03/23/2016 Dong Group

Supplementary Materials: Metathetical Redox Reaction of (Diacetoxyiodo)arenes and Iodoarenes

Regioselective Reductive Cross-Coupling Reaction

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds

Topic Review Group meeting

Construction of C-C or C-N Bond via C-H Activation ~Chemistry of Yong-Qiang Tu~

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate

Xuefeng Jiang Professor Education Academic Career Awards International Invited Lecture USA Germany Shanghai Taiwan Singapore)

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

Review. Frank Glorius & His Rh(III) C-H Activation. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo 1 /21

Learning Guide for Chapter 11 - Alkenes I

Synthesis of Enamides via CuI-Catalyzed Reductive Acylation of. Ketoximes with NaHSO 3

C H Bond Functionalization: New Strategies for the Synthesis of Complex Natural Products and Pharmaceuticals. Phil Knutson Ferreira Group 12/3/2015

Metal Hydrides, Alkyls, Aryls, and their Reactions

Chapter 19: Alkenes and Alkynes

Microreactors in Chemistry! Christina Moberg!

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr.

Self-stable Electrophilic Reagents for Trifluoromethylthiolation. Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date:

Preparation, structure, and oxidative reactivity of (dichloroiodo)pyridines: recyclable hypervalent iodine reagents

Stereoselective Allylation of Imines. Joshua Pierce Research Topic Seminar

Oxidative couplings of two nucleophiles

LECTURE #14 Thurs., Oct.20, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

Mechanisms of Ion Fragmentation (McLafferty Chapter 4) Business Items

Beyond Directing Groups

Review Revisiting the Baldwin s Rules Guidelines for Ring Closure Li Yuanhe Anion- 3/4 4/5 5/6 6/7 endo- -dig exo- endo- -trig exo- endo- -tet exo-

Converting Cycloalkanones into N- Heterocycles: Formal Synthesis of ( )-Gephyrotoxin 287C. Claude Spino et al., J. Org. Chem. 2013, 78,

Bio-inspired C-H functionalization by metal-oxo complexes

A Simple Introduction of the Mizoroki-Heck Reaction

Denmark Group Meeting. & Electrophilic rearrangement of amides

Organic Chemistry(I) Chapter 3

Copper-catalyzed cleavage of benzyl ethers with diacetoxyiodobenzene and p-toluenesulfonamide

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

Silenes in organic synthesis: a concise synthesis of (±)-epi-picropodophyllin

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

Chapter 21 Coordination chemistry: reactions of complexes

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement.

Nucleophilic Substitutions. Ionic liquids

Complex Interactions of Pillar[5]arene with Paraquats and. Bis(pyridinium) Derivatives

Chem 251 Fall Learning Objectives

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

Química Orgânica I. Organic Reactions

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

Alcohols, Ethers and Epoxides. Chapter Organic Chemistry, 8th Edition John McMurry

Ligand Effects in Nickel Catalysis. Anthony S. Grillo Chem 535 Seminar October 22, 2012

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Synthesis and Reactivity of Vinyl Iodonium Salts

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

L.7. Mass Spectrum Interpretation

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

Organohypervalent Iodine: Application as a Hypernucleofuge

Supporting Information

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY

a. Why do the amides coordinate to Zr and the phosphines to Co?

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

Functionalized Organometallic Reagents

Dr. P. Wipf Chem /26/2007

Grob Fr agmentations. Dan Tao Overman Group Meeting 9/24/12

Copyright 2017 Dan Dill 1

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4

Alkynyl(phenyl) iodonium triflates as precursors to iridium(iii) σ acetylide complexes

Amines and Heterocycles. McMurry: Chapter 24

Organocatalytic Umpolung via N- Heterocyclic Carbenes. Qinghe Liu Hu Group Meeting August 20 th 2015

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

Synthesis of 1,3-Diols via Controlled, Radical-Mediated C-H Functionalization

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

Transcription:

Hypervalent Iodine(III): Property and Reactivity Penghao Chen g Dong Group Seminar October, 21 st, 2015

Structure and Nomenclature Aryl λ 3 iodanes: L I L L : hypervalent bond with a pure 5p orbital Ar I : typical bond with sp 2 hybridized orbital Aryl λ 5 iodanes L I L : hypervalent bond with two pure 5 p orbitals Ar I : typicalbond withsp hybridized orbital Iodanes with oxidation state of IV or higher generally undergoes oxidative processes Ochiai, Top. Curr. Chem. 2002, 224, 1.

Structure and Nomenclature [N X L] N: valence electron. X: central atom. L: ligand λ N : nonstandard bonding number Ochiai, Top. Curr. Chem. 2002, 224, 1.

General Reactivity Property Ligand Exchange Ochiai, Top. Curr. Chem. 2002, 224, 1.

General Reactivity Property Ligand Exchange Ochiai, Top. Curr. Chem. 2002, 224, 1.

General Reactivity Property Hypernucleofuge: Reductive Elimination Okuyama and Ochiai, J. Am. Chem. Soc. 1995, 117, 3360. Ochiai and Nagao, J. Chem. Soc., Chem. Commun. 1986, 1382.

General Reactivity Property Hypernucleofuge: Reductive Elimination Okuyama and Ochiai, J. Am. Chem. Soc. 1995, 117, 3360. Ochiai and Nagao, J. Chem. Soc., Chem. Commun. 1986, 1382.

General Reactivity Property Hypernucleofuge: Reductive Elimination Okuyama and Ochiai, J. Am. Chem. Soc. 1995, 117, 3360. Ochiai and Nagao, J. Chem. Soc., Chem. Commun. 1986, 1382. Wiberg, J. Org. Chem. 1982, 47, 2720.

General Reactivity Property Pseudorotation of λ 3 Iodane Berry, J. Chem. Phys. 1960, 32, 933. Ochiai, J. Am. Chem. Soc. 1990, 112, 5677.

General Reactivity Property Ligand Coupling on Iodine (III) Weigand, J. Org. Chem. 1976, 41, 3360. Okawara, Bull. Chem. Soc. Jpn. 1974, 47, 3179. Okawara, Bull. Chem. Soc. Jpn. 1972, 45, 1860.

General Reactivity Property Ligand Coupling on Iodine (III) Ochiai, J. Org. Chem. 1997, 62, 2130.

General Reactivity Property Electronic Nature Ochiai and Nagao, J. Chem. Soc., Chem. Commun. 1988, 1076.

General Reactivity Property Homolytic Cleavage Togo, Synlett. 2001, 565. Zhdankin, Rev. Heteroatom Chem. 1997, 17, 213.

General Reactivity Property Homolytic Cleavage Plesnicar, J. Am. Chem. Soc. 1968, 90, 4450. Ochiai, J. Am. Chem. Soc. 1992, 114, 6269. Zhdankin, J. Am. Chem. Soc. 1996, 118, 5192.

General Reactivity Property Single Electron Transfer Kita, J. Am. Chem. Soc. 1994, 116, 3684. Kita, Tetrahedron 2001, 57, 345.

General Reactivity Property Transformation RIL 2 Oxidation to form Multiple Bonds Reductive Elimination with Substitution Reductive Elimination with Rearrangement Activation of Multiple Bonds Oxidative Dearomatization Radical Transformation R2 IL Alkyl(aryl) IL Alkenyl(aryl) IL Alkynyl(aryl) IL

Preparation RIL 2 I PhI(OAc) 2 NaClO, HCl H 2 O, 20 o C, 5 min NaOH, H 2 O RT, 3h PhIO Cl I Cl R AcOOH, Ac 2 O ArI ArI(OAc) 2 Me I OMe 1) NaBO 3,HOAc 2) TsOH H 2 O R Me OMe I(OH)OT s OH HC(OMe) 3 PhI(OH)OTs PhI(OMe)OTs O I(Ph)OTs Zhang, Synthesis, 2009, 14, 2324. Dauban and Fleurat Lessard, J. Org. Chem., 2015, 80, 1414. Saltzman, Org. Synth. Coll., 1973, 5, 660. Wirth, Eur. J. Org. Chem. 2001, 1569. Koser, J. Am. Chem. Soc. 1990, 112, 5672.

Transformation RIL 2 Oxidation to form Multiple Bonds Kitamura, Heterocyclic Commun. 1998, 4, 205. Nagao, Tetrahedron Lett. 1988, 29, 6913.

Transformation RIL 2 Oxidation to form Multiple Bonds Kita, J. Chem. Soc., Chem. Commun. 1998, 173. Magnus, Synthesis. 1998, 547.

Transformation RIL 2 Oxidation to form Multiple Bonds Magnus, J. Am. Chem. Soc. 1992, 114, 767. Kiyokawa and Minakata, Angew. Chem. Int. Ed. 2015, 54, ASAP.

Transformation RIL 2 Reductive Elimination with Substitution Imamura, Bull. Chem. Soc. Jpn. 1978, 51, 335. Koser, J. Org. Chem. 1982, 47, 2487.

Transformation RIL 2 Reductive Elimination with Substitution Moriarty, Tetrahedron Lett. 1990, 31, 201. Hanaoka, Tetrahedron Lett. 1986, 27, 2023.

Transformation RIL 2 Reductive Elimination with Substitution Taschner and Koser, Tetrahedron Lett. 1986, 27, 4557.

Transformation RIL 2 Reductive Elimination with Substitution 103 104 Wang, Synlett, 2009, 2529. Dong, Org. Lett. 2007, 9, 5345.

Transformation RIL 2 Reductive Elimination with Rearrangement Loudon, J. Org. Chem. 1984, 49, 4277. Tomasini, Org. Biomol. Chem. 2008, 6, 1849.

Transformation RIL 2 Reductive Elimination with Rearrangement 77-91% Ochiai and Fujita, J. Org. Chem. 1989, 54, 4832.

Transformation RIL 2 Reductive Elimination with Rearrangement Du and Zhao, Org. Lett. 2013, 15, 2906.

Transformation RIL 2 Reductive Elimination with Rearrangement Du and Zhao, Org. Lett. 2014, 16, 5772.

Transformation RIL 2 Reductive Elimination with Rearrangement Zhu, Chem. Commun. 2013, 49, 7352. Zhu, Org. Lett. 2013, 15, 3476.

Transformation RIL 2 Reductive Elimination with Rearrangement Antonchick, Angew. Chem. Int. Ed. 2014, 53, 8163.

Transformation RIL 2 Activation of Multiple Bonds Wirth, ChemistryOpen, 2012, 1, 245.

Transformation RIL 2 Activation of Multiple Bonds Moon, Tetrahedron Lett. 2013, 54, 2960. Wirth, Synthesis, 2012, 44, 1171.

Transformation RIL 2 Activation of Multiple Bonds Stuart, Angew. Chem. Int. Ed. 2015, 54, ASAP.

Transformation RIL 2 Oxidative Dearomatization Quideau, Tetrahedron 2010, 66, 2235.

Transformation RIL 2 Oxidative Dearomatization Fujioka and Kita, Chem. Commun. 2010, 46, 4133.

Transformation RIL 2 Oxidative Dearomatization Canesi, Org. Lett. 2009, 11, 4756.

Transformation RIL 2 Oxidative Dearomatization Canesi, Org. Lett. 2014, 16, 4928.

Transformation RIL 2 Oxidative Dearomatization ArSO 2 HN O N H O N CO 2 Me 1.1 eq PhI(OAc) 2 2.0 eq LiOAc CF 3 CH 2 OH -20 o C, 10 min ArSO 2 HN 20-25% HN O O N CO 2 Me HO N H O NH Br Br Harran, Angew. Chem. Int. Ed. 2003, 42, 4961.

Transformation RIL 2 Oxidative Dearomatization Canesi, Chem. Eur. J. 2015, 21, ASAP.

Transformation RIL 2 Radical Suarez, Tetrahedron Lett. 1985, 26, 2493. Paquette, Tetrahedron Lett. 1997, 38, 195.

Transformation RIL 2 Radical Breslow, J. Am. Chem. Soc. 1991, 113, 8977.

Transformation RIL 2 Radical Pattenden, Tetrahedron Lett. 1993, 34, 127. Zhao and Du, J. Org. Chem. 2014, 79, 7451.

Transformation RIL 2 Radical Antonchick, Angew. Chem. Int. Ed. 2013, 52, 3267.

Transformation RIL 2 Radical Antonchick, Angew. Chem. Int. Ed. 2013, 52, 7985.

Preparation R 2 IL Fujita, Tetrahedron Lett. 1985, 4501. Stang, J. Am. Chem. Soc. 1994, 116, 93.

Transformation R 2 IL Alkyl(aryl) IL Reich, J. Am. Chem. Soc. 1978, 100, 4888. Magnus, J. Am. Chem. Soc. 1992, 114, 767.

Transformation R 2 IL Alkyl(aryl) IL DMSO/THF (94%) Kitamura, J. Am. Chem. Soc. 1999, 121, 11674. Rawal, J. Am. Chem. Soc. 1998, 120, 13523.

Transformation R 2 IL Alkenyl(aryl) IL Ochiai, J. Am. Chem. Soc. 1988, 110, 6565.

Transformation R 2 IL Alkenyl(aryl) IL Ochiai, J. Am. Chem. Soc. 1991, 113, 3135. Ochiai, J. Am. Chem. Soc. 1993, 115, 2528.

Transformation R 2 IL Alkenyl(aryl) IL Ochiai, J. Am. Chem. Soc. 1996, 118, 10141.

Transformation R 2 IL Alkenyl(aryl) IL Ochiai, J. Org. Chem. 1999, 64, 8563. Ochiai, J. Am. Chem. Soc. 1996, 118, 10141. Ochiai, J. Am. Chem. Soc. 1988, 110, 6565.

Transformation R 2 IL Alkynyl(aryl) IL Ochiai and Fujita, J. Am. Chem. Soc. 1986, 108, 8281.

Transformation R 2 IL Alkynyl(aryl) IL Ochiai and Fujita, J. Am. Chem. Soc. 1986, 108, 8281.

Transformation R 2 IL Alkynyl(aryl) IL Ochiai, J. Am. Chem. Soc. 1991, 113, 3136. Ochiai, J. Am. Chem. Soc. 1986, 108, 8281. Feldman, J. Org. Chem. 1995, 60, 7722.

Transformation R 2 IL Alkynyl(aryl) IL Stang, J. Am. Chem. Soc. 1994, 116, 93. Feldman, Org. Lett. 2000, 2, 2603.

Acknowledgement Welcome Marshall!!

Q1

Q2

Q3

A1

A2

A3