Recall the convention that, for us, all vectors are column vectors.

Similar documents
Math 315: Linear Algebra Solutions to Assignment 7

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

Chapter 1. Matrix Algebra

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

Lecture 1 Review: Linear models have the form (in matrix notation) Y = Xβ + ε,

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

MA 265 FINAL EXAM Fall 2012

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

Chapter 3 Transformations

ELE/MCE 503 Linear Algebra Facts Fall 2018

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

Solutions to Final Exam

STAT200C: Review of Linear Algebra

Eigenvalues and Eigenvectors A =

Linear Algebra Formulas. Ben Lee

Chapter 6: Orthogonality

Knowledge Discovery and Data Mining 1 (VO) ( )

Econ Slides from Lecture 7

PRACTICE PROBLEMS FOR THE FINAL

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

Math 407: Linear Optimization

1 Last time: least-squares problems

Review of Linear Algebra

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

MAT Linear Algebra Collection of sample exams

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Problem # Max points possible Actual score Total 120

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

2. Every linear system with the same number of equations as unknowns has a unique solution.

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

Conceptual Questions for Review

NOTES on LINEAR ALGEBRA 1

Mathematical Foundations of Applied Statistics: Matrix Algebra

Solutions to Review Problems for Chapter 6 ( ), 7.1

Math 265 Linear Algebra Sample Spring 2002., rref (A) =

Elementary linear algebra

Lecture notes: Applied linear algebra Part 1. Version 2

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Chapter 5 Eigenvalues and Eigenvectors

Appendix A: Matrices

MATH. 20F SAMPLE FINAL (WINTER 2010)

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

235 Final exam review questions

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

LINEAR ALGEBRA REVIEW

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

LINEAR ALGEBRA SUMMARY SHEET.

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices

Introduction to Matrix Algebra

Review problems for MA 54, Fall 2004.

DM554 Linear and Integer Programming. Lecture 9. Diagonalization. Marco Chiarandini

MTH 2032 SemesterII

Online Exercises for Linear Algebra XM511

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A.

Spring 2014 Math 272 Final Exam Review Sheet

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

Review of Some Concepts from Linear Algebra: Part 2

Lecture Summaries for Linear Algebra M51A

Properties of Matrices and Operations on Matrices

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6

7. Symmetric Matrices and Quadratic Forms

Numerical Linear Algebra Homework Assignment - Week 2

ELEMENTS OF MATRIX ALGEBRA

Study Guide for Linear Algebra Exam 2

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later.

Recall : Eigenvalues and Eigenvectors

Lecture 7: Positive Semidefinite Matrices

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

Linear Algebra Massoud Malek

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Introduction to Matrices

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

Chapter Two Elements of Linear Algebra

After we have found an eigenvalue λ of an n n matrix A, we have to find the vectors v in R n such that

a 11 a 12 a 11 a 12 a 13 a 21 a 22 a 23 . a 31 a 32 a 33 a 12 a 21 a 23 a 31 a = = = = 12

Chap 3. Linear Algebra

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

M340L Final Exam Solutions May 13, 1995

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Transcription:

Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists a real and nonzero vector called an eigenvector for λ such that A = λ. Whenever is an eigenvector for λ, so is for every real number. The characteristic polynomial χ A of matrix A is the function χ A (λ) := det(λi A) defined for all complex numbers λ, where I denotes the identity matrix. It is not hard to see that a complex number λ is an eigenvalue of A if and only if χ A (λ) =0. We see by direct computation that χ A is an th-order polynomial. Therefore, A has precisely eigenvalues, thanks to the fundamental theorem of algebra. We can write them as λ 1 λ, or sometimes more precisely as λ 1 (A)λ (A). 1. The spectral theorem. The following important theorem is the starting point of our discussion. It might help to recall that vectors 1 R are orthonormal if =0when = and = 2 =1. Theorem 1. If A is a real and symmetric matrix, then λ 1 λ are real numbers. Moreover, there exist orthonormal eigenvectors 1 that correspond respectively to λ 1 λ. 11

12 3. Some linear algebra I will not prove this result, as it requires developing a good deal of elementary linear algebra that we will not need. Instead, let me state and prove a result that is central for us. Theorem 2 (The spectral theorem). Let A denote a symmetric matrix with real eigenvalues λ 1 λ and corresponding orthonormal eigenvectors 1. Define D := diag(λ 1 λ ) to be the diagonal matrix of the λ s and P to be the matrix whose columns are 1 though respectively; that is, λ 1 0 0 0 0 λ 2 0 0 D := 0 0 λ 3 0 P := ( 1 )....... 0 0 0 λ Then P is orthogonal [P = P 1 ] and A = PDP 1 = PDP. Proof. P is orthogonal because the orthonormality of the s implies that P P = 1. ( 1 ) = I Furthermore, because A = λ, it follows that AP = PD, which is another way to say that A = PDP 1. Recall that the trace of an matrix A is the sum A 11 + + A of its diagonal entries. Corollary 3. If A is a real and symmetric matrix with real eigenvalues λ 1 λ, then tr(a) =λ 1 + + λ and det(a) =λ 1 λ Proof. Write A, in spectral form, as PDP 1. Since the determinant of P 1 is the reciprocal of that of A, it follows that det(a) = det(d), which is clearly λ 1 λ. In order to compute the trace of A we compute directly also: tr(a) = P DP 1 = P D P 1 =1 =1 =1 =1 =1 =1 =1 = PP 1 D = D = tr(d) =1

2. Positive-semidefinite matrices 13 which is λ 1 + + λ. 2. The square-root matrix. Let A continue to denote a real and symmetric matrix. Proposition 4. There exists a complex and symmetric matrix B called the square root of A and written as A 1 /2 or even sometimes as A such that A = B 2 := BB. The proof of Proposition 4 is more important than its statement. So let us prove this result. Proof. Apply the spectral theorem and write A = PDP 1. Since D is a diagonal matrix, its square root can be defined unambiguously as the following complex-valued diagonal matrix: λ 1 /2 1 0 0 0 0 λ 1 /2 2 0 0 D 1 /2 := 0 0 λ 1 /2 3 0....... 0 0 0 λ 1 /2 Define B := PD 1 /2 P 1, and note that since P 1 P = I and (D 1 /2 ) 2 = D. B 2 = PD 1 /2 P 1 PD 1 /2 P 1 = PDP 1 = A 2. Positive-semidefinite matrices Recall that an matrix A is positive semidefinite if it is symmetric and A 0 for all R Recall that A is positive definite if it is symmetric and A > 0 for all nonzero R Theorem 5. A symmetric matrix A is positive semidefinite if and only if all of its eigenvalues are 0. A is positive definite if and only if all of its eigenvalues are > 0. In the latter case, A is also nonsingular. The following is a ready consequence. Corollary 6. All of the eigenvalues of a variance-covariance matrix are always 0. Now let us establish the theorem.

14 3. Some linear algebra Proof of Theorem 5. Suppose A is positive semidefinite, and let λ denote one of its eignenvalues, together with corresponding eigenvector. Since 0 A = λ 2 and > 0, it follows that λ 0. This proves that all of the eigenvalues of A are nonnegative. If A is positive definite, then the same argument shows that all of its eigenvalues are > 0. Because det(a) is the product of all eigenvalues of A (Corollary 3), it follows that det(a) > 0, whence A is nonsingular. This proves slightly more than half of the proposition. Now let us suppose that all eigenvalues of A are 0. We write A in spectral form A = PDP, and observe that D is a diagonal matrix of nonnegative numbers. By virute of its construction. A 1 /2 = PD 1 /2 P, and hence for all R, A = D 1 /2 P D 1 /2 P = D 1 /2 P which is 0. Therefore, A is positive semidefinite. 2 (1) If all of the eigenvalues of A are > 0, then (1) tells us that A = D 1 /2 P 2 2 = D 1 /2 2 P = λ [P] (2) =1 where λ > 0 for all. Therefore, A min 1 λ =1 =1 [P] 2 = min 1 λ P P = min 1 λ 2 Since min 1 λ > 0, it follows that A > 0 for all nonzero. This completes the proof. Let us pause and point out a consequence of the proof of this last result. Corollary 7. If A is positive semidefinite, then its extremal eigenvalues satisfy min λ A = min 1 >0 2 max λ A = max 1 >0 2 Proof. We saw, during the course of the previous proof, that Optimize over all to see that min λ 2 A for all R (3) 1 min λ A min 1 >0 2 (4)

3. The rank of a matrix 15 But min 1 λ is an eigenvalue for A; let denote a corresponding eigenvector in order to see that min λ A min 1 >0 2 A 2 = min 1 λ So both inequalities are in fact equalities, and hence follows the formula for the minimum eigenvalue. The one for the maximum eigenvalue is proved similarly. Finally, a word about the square root of positive semidefinite matrices: Proposition 8. If A is positive semidefinite, then so is A 1 /2. positive definite, then so is A 1 /2. If A is Proof. We write, in spectral form, A = PDP and observe [by squaring it] that A 1 /2 = PD 1 /2 P. Note that D 1 /2 is a real diagonal matrix since the eigenvalues of A are 0. Therefore, we may apply (1) to A 1 /2 [in place of A] to see that A 1 /2 = D 1 /4 P 2 0 where D 1 /4 denotes the [real] square root of D 1 /2. This proves that if A is positive semidefinite, then so is A 1 /2. Now suppose there exists a positive definite A whose square root is not positive definite. It would follow that there necessarily exists a nonzero R such that A 1 /2 = D 1 /4 P 2 =0. Since D 1 /4 P = 0, D 1 /2 P = D 1 /4 D 1 /4 P = 0 A = D 1 /2 P 2 =0 And this contradicts the assumption that A is positive definite. 3. The rank of a matrix Recall that vectors 1 are linearly independent if 1 1 + + = 0 1 = = =0 For instance, 1 := (1 0) and 2 := (0 1) are linearly independent 2- vectors. The column rank of a matrix A is the maximum number of linearly independent column vectors of A. The row rank of a matrix A is the maximum number of linearly independent row vectors of A. We can interpret these definitions geometrically as follows: First, suppose A is and define (A) denote the linear space of all vectors of the form 1 1 + +, where 1 are the column vectors of A and 1 are real numbers. We call (A) the column space of A. We can define the row space (A), of A similarly, or simply define (A) := (A ).

16 3. Some linear algebra Lemma 9. For every matrix A, (A) ={A : R } (A) := A : R We can think of an matrix A as a mapping from R into R ; namely, we can think of matrix A also as the function A () := A. In this way we see that (A) is also the range of the function A. Proof. Let us write the columns of A as 1 2 Note that (A) if and only if there exist 1 such that = 1 1 + + = A, where := ( 1 ). This shows that (A) is the collection of all vectors of the form A, for R. The second assertion [about (A)] follows from the definition of (A equalling (A ) and the alreadyproven first assertion. It then follows, from the definition of dimension, that column rank of A = dim (A) row rank of A = dim (A) Proposition 10. Given any matrix A, its row rank and column rank are the same. We write their common value as rank(a). Proof. Suppose A is and its column rank is. Let 1 denote a basis for (A) and consider the matrix matrix B := ( 1 ). Write A, columnwise, as A := ( 1 ). For every 1, there exists 1 such that = 1 1 + +. Let C := ( ) be the resulting matrix, and note that A = BC. Because A = =1 B C ;, every row of A is a linear combination of the rows of C. In other words, (A) (C) and hence the row rank of A is dim (C) = = the column rank of A. Apply this fact to A to see that also the row rank of A is the column rank of A ; equivalently that the column rank of A is the row rank of A. Proposition 11. If A is and B is, then rank(ab) min (rank(a) rank(b)) Proof. The proof uses an idea that we exploited already in the proof of Proposition 10: Since (AB) = ν=1 A νb ν, the rows of AB are linear combinations of the rows of B; that is (AB) (B), whence rank(ab) rank(b). Also, (AB) (A), whence rank(ab) rank(a). These observations complete the proof.

3. The rank of a matrix 17 Proposition 12. If A and C are nonsingular, then rank(abc) =rank(b) provided that the dimensions match up so that ABC makes sense. Proof. Let D := ABC; our goal is to show that rank(d) =rank(b). Two applications of the previous proposition together yield rank(d) rank(ab) rank(b) And since B = A 1 DC 1, we have also rank(b) rank(a 1 D) rank(d) Corollary 13. If A is an real and symmetric matrix, then rank(a) = the total number of nonzero eigenvalues of A. In particular, A has full rank if and only if A is nonsingular. Finally, (A) is the linear space spanned by the eigenvectors of A that correspond to nonzero eigenvalues. Proof. We write A, in spectral form, as A = PDP 1, and apply the preceding proposition to see that rank(a) =rank(d), which is clearly the total number of nonzero eigenvalue of A. Since A is nonsingular if and only if all of its eigenvalues are nonzero, A has full rank if and only if A is nonsingular. Finally, suppose A has rank ; this is the number of its nonzero eigenvalues λ 1 λ. Let 1 denote orthonormal eigenvectors such that 1 are eigenvectors that correspond to λ 1 λ and +1 are eigenvectors that correspond to eigenvalues 0 [Gram Schmidt]. And define to be the span of 1 ; i.e., := { 1 1 + + : 1 R} Our final goal is to prove that = (A), which we know is equal to the linear space of all vectors of the form A. Clearly, 1 1 + + = A, where = =1 ( /λ ) Therefore, (A). If =, then this suffices because in that case 1 is a basis for R, hence = (A) =R. If <, then we can write every R as 1 1 + +, so that Ax = =1 λ. Thus, (A) and we are done. Let A be and define the null space [or kernel ] of A as (A) := { R : A = 0} Note that (A) is the linear span of the eigenvectors of A that correspond to eigenvalue 0. The other eigenvectors can be chosen to be orthogonal to these, and hence the preceding proof contains the facts

18 3. Some linear algebra that: (i) Nonzero elements of (A) are orthogonal to nonzero elements of (A); and (ii) dim (A)+ rank(a) = (= the number of columns of A) (5) Proposition 14. rank(a) = rank(a A) = rank(aa ) for every matrix A. Proof. If A = 0 then A A = 0, and if A A = 0, then A 2 = A A =0 In other words, (A) =(A A). Because A A and A both have columnes, it follows from (5) that rank(a A)=rank(A). Apply this observation to A to see that rank(a )=rank(aa ) as well. The result follows from this and the fact that A and A have the same rank (Proposition 10). 4. Projection matrices A matrix A is said to be a projection matrix if: (i) A is symmetric; and (ii) A is idempotent ; that is, A 2 = A. In- Note that projection matrices are always positive semidefinite. deed, A = A 2 = A A = A 2 0 Proposition 15. If A is an projection matrix, then so is I A. Moreover, all eigenvalues of A are zeros and ones, and rank(a) =the number of eigenvalues that are equal to one. Proof. (I A) 2 = I 2A + A 2 = I A Since I A is symmetric also, it is a projection. If λ is an eigenvalue of A and is a corresponding eigenvector, then λ = A = A 2 = λa = λ 2. Multiply both sides by to see that λ 2 = λ 2 2. Since > 0, it follows that λ {01}. The total number of nonzero eigenvalues is then the total number of eigenvalues that are ones. Therefore, the rank of A is the total number of eigenvalues that are one. Corollary 16. If A is a projection matrix, then rank(a) =tr(a). Proof. Simply recall that tr(a) is the sum of the eigenvalues, which for a projection matrix, is the total number of eigenavalues that are one. Why are they called projection matrices? Or, perhaps even more importantly, what is a projection?

4. Projection matrices 19 Lemma 17. Let Ω denote a linear subspace of R, and R be fixed. Then there exists a unique element Ω that is closest to ; that is, = min Ω The point is called the projection of onto Ω. Proof. Let := dim Ω, so that there exists an orthonormal basis 1 for Ω. Extend this to a basis 1 for all of R by the Gram Schmidt method. Given a fixed vector R, we can write it as := 1 1 + + for some 1 R. Define := 1 1 + +. Clearly, Ω and 2 = =+1 2. Any other Ω can be written as = =1, and hence 2 = =1 ( ) 2 + =+1 2, which is strictly greater than 2 = =+1 2 unless = for all =1; i.e., unless =. Usually, we have a -dimensional linear subspace Ω of R that is the range of some matrix A. That is, Ω={A : R }. Equivalently, Ω=(A). In that case, min Ω 2 = min A 2 = min A A A A + R R Because A is a scalar, the preceding is simplified to min Ω 2 = min A A 2 A + R Suppose that the positive semidefinite matrix A A is nonsingular [so that A A and hence also (AA ) 1 are both positive definite]. Then, we can relabel variables [α := A A] to see that min Ω 2 = min α (A A) 1 α 2α (A A) 1 A + α R A little arithmetic shows that (α A ) (A A) 1 (α A ) Consequently, = α (A A) 1 α 2α (A A) 1 A + A(A A) 1 A min 2 Ω = min (α A ) (A A) 1 (α A ) A(A A) 1 A + α R The first term in the parentheses is 0; in fact it is > 0 unless we select α = A. This proves that the projection of onto Ω is obtained by setting α := A, in which case the projection itself is A =

20 3. Some linear algebra A(A A) 1 A and the distance between and is the square root of 2 A(A A) 1 A. Let P Ω := A(A A) 1 A. It is easy to see that P Ω is a projection matrix. The preceding shows that P Ω is the projection of onto Ω for every R. That is, we can think of P Ω as the matrix that projects onto Ω. Moreover, the distance between and the linear subspace Ω [i.e., min R ] is exactly the square root of P Ω = (I P Ω ) = (I P Ω ) 2, because I P Ω is a projection matrix. What space does it project into? Let Ω denote the collection of all -vectors that are perpendicular to every element of Ω. If Ω, then we can write, for all R, 2 = (I P Ω ) + P Ω 2 = (I P Ω ) 2 + P Ω 2 2 { (I P Ω )} P Ω = (I P Ω ) 2 + P Ω 2 since is orthogonal to every element of Ω including P Ω, and P Ω = P 2 Ω. Take the minimum over all Ω to find that I P Ω is the projection onto Ω. Let us summarize our findings. Proposition 18. If A A is nonsingular [equivalently, has full rank], then P (A) := A(A A) 1 A is the projection onto (A), I P (A) = P (A) is the projection onto Ω, and we have = P (A) + P (A) and 2 = P (A) 2 + P (A) 2 The last result is called the Pythagorean property.