ν=0 Quantum Hall state in Bilayer graphene: collective modes

Similar documents
Spin Superfluidity and Graphene in a Strong Magnetic Field

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Goldstone mode stochastization in a quantum Hall ferromagnet

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

Kitaev honeycomb lattice model: from A to B and beyond

The Overhauser Instability

Phase transitions in Bi-layer quantum Hall systems

arxiv:cond-mat/ v2 8 May 1998

Spontaneous symmetry breaking and exotic quantum orders in integer quantum Hall systems under a tilted magnetic field

Electron interactions in graphene in a strong magnetic field

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Vortex States in a Non-Abelian Magnetic Field

Quantum Physics II (8.05) Fall 2002 Outline

Electron Correlation

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Pseudospin Magnetism in Graphene

Electron interactions in graphene in a strong magnetic field

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

This is called a singlet or spin singlet, because the so called multiplicity, or number of possible orientations of the total spin, which is

Magnetism at finite temperature: molecular field, phase transitions

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

The Quantum Theory of Magnetism

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Solution of Second Midterm Examination Thursday November 09, 2017

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

in-medium pair wave functions the Cooper pair wave function the superconducting order parameter anomalous averages of the field operators

Preface Introduction to the electron liquid

Quantum numbers and collective phases of composite fermions

Supersymmetry and Quantum Hall effect in graphene

Magnets, 1D quantum system, and quantum Phase transitions

Mean-Field Theory: HF and BCS

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Time Reversal Invariant Ζ 2 Topological Insulator

Luttinger Liquid at the Edge of a Graphene Vacuum

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 7 Jan 2004

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube

Nucleons in Nuclei: Interactions, Geometry, Symmetries

3. Quantum matter without quasiparticles

Beyond the Quantum Hall Effect

Effects of Interactions in Suspended Graphene

Global phase diagram of =2 quantum Hall bilayers in tilted magnetic fields

The Quantum Heisenberg Ferromagnet

Graphite, graphene and relativistic electrons

H 2 in the minimal basis

The Mermin-Wagner Theorem

We also deduced that transformations between Slater determinants are always of the form

Hyperfine interaction

Electronic Squeezing by Optically Pumped Phonons: Transient Superconductivity in K 3 C 60. With: Eli Wilner Dante Kennes Andrew Millis

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Topological insulator part II: Berry Phase and Topological index

Luigi Paolasini

SUPPLEMENTARY INFORMATION

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Linear Algebra (Review) Volker Tresp 2017

Luigi Paolasini

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Theoretical study of fission barriers in odd-a nuclei using the Gogny force

16. GAUGE THEORY AND THE CREATION OF PHOTONS

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS

Coulomb Drag in Graphene

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Isotropic harmonic oscillator

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Vortices and vortex states of Rashba spin-orbit coupled condensates

Time-Dependent Density-Functional Theory

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Topological Insulators

Topological insulator part I: Phenomena

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Zooming in on the Quantum Hall Effect

Berry s phase in Hall Effects and Topological Insulators

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals

Fundamentals and New Frontiers of Bose Einstein Condensation

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Competing Ferroic Orders The magnetoelectric effect

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

On the Uniqueness of Molecular Orbitals and limitations of the MO-model.

Gapless Spin Liquids in Two Dimensions

Ket space as a vector space over the complex numbers

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Condensed matter theory Lecture notes and problem sets 2012/2013

Exchange Mechanisms. Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich. lecture notes:

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations

Non perturbative properties of

Superfluid Helium-3: From very low Temperatures to the Big Bang

Is the homogeneous electron gas homogeneous?

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Magnetic ordering of local moments

Topological Insulators and Ferromagnets: appearance of flat surface bands

MPS formulation of quasi-particle wave functions

Ferromagnetic superconductors

Transcription:

ν= Quantum Hall state in Bilayer graphene: collective modes Bilayer graphene: Band structure Quantum Hall effect ν= state: Phase diagram Time-dependent Hartree-Fock approximation Neutral collective excitations J. R. M. de Nova, I. Z. & E. Demler

Band structure I

Band structure I-bis 3

Band structure II 4

Band structure III 5

Hamiltonian: No interactions Interlayer voltage ε V Zeeman term ε Z QH in bilayer graphene I ˆ ˆ ˆ B V zz Z z H d x ( x) H T ( x) H T B a B B ( ab ) 1 KK AB ij i j s eb 1 B 6.81 B[ T] Hz m l B y ix 5.7 ab, lb nm eb B [ T] ˆ ( ) ˆ KA x ( x) KA ˆ ( ) ˆ ( ) KB KB ˆ ( ) x x x, ˆ ( x) ˆ ( ) KB KA x ˆ ( ) ˆ KA x ( ) KB x 6

Orbital spin-valley decomposition:, ( x) ( x) n, k n, k QH in bilayer graphene II Orbital wave functions (Landau gauge) χ are spinors in valley-spin. Shown spinor is in sub-lattice QN n=landau level index n, 1 iky e 1 sgn n n ( x kl ) B nk, ( x) L n ( x klb) y n sgn n n ( n 1) B ˆ ( ) ˆ KA x ( x) KA ˆ ( ) ˆ ( ) KB KB ˆ ( ) x x x, ˆ ( x) ˆ ( ) KB KA x ˆ ( ) ˆ KA x ( ) KB x ν= state: ZLL, n= and 1 iky nk, ( x) L n ( x klb) y n e 7

ZLL projection ˆ ( x) ( x) cˆ n,1 k, n, k, n, k, QH in bilayer graphene III () 1 Hˆ d xˆ ( x) ˆ ˆ ˆ ˆ ˆ VTz Z z ( x) d d :[ ( ) ( )] ( )[ ( ) ( )]: x x x x V x x x x 14 d g :[ ˆ ( ) ˆ( )] : d d ˆ ( ) (, ) ˆ i Ti V DS ( ) m x x x x x x x x x i T g g g KK i i x y z, g HF homogeneous and Hund s rule ansatz half-filling GS cˆ ˆ ˆ ˆ kac1 kackbc1 kb k HF equations for spin-valley spinors (a b filled, c d empty levels) F F P T u [tr( PT )] T T PT n n, n V z Z z i i i i i i F F P, n n a a b b n,( a, b) ( a, b) n,( c, d ) ( c, d ) u 4 g F (3 / ) F F (5 / 4) F i B i 1 F e c l B 8

occupied, ab, c,d Ferromagnetic (F): VALLEY SPIN a z z empty n s, n s b z z n s, n s c u u z z d z z z V Z Full layer-polarized (FLP): n s, n s a z z b z z n s, n s c z z d z z Phase diagram I Canted-Antiferromagnetic (CAF): n s, n s a z a b z n s, n s s c [ sin cos, sin sin, cos ] a, b s s s s s cos u z s z a d z b Z / u V Z u u u u Partially layer-polarized (PLP): n s, n s n [sin cos,sin sin, cos ] cos / ( u z n s, n s a z b z c v z v v v v z u d ) v b z v V u u * * (, z ) ( Z /, V Z / ) Actual graphene: u u, u, u ~.1 z z B 9

Phase diagram II 1

Hartree-Fock (Thouless approach): ˆ 1 H ( H ) cˆ cˆ V cˆ cˆ cˆ cˆ sp lk l k lk, jm l j m k l, k l, k, j, m N 1 e w ˆ Slater det. ansatz occupied c cˆ cˆ Small variations empty Hˆ cˆ cˆ Hˆ HF equations 1 ( Hˆ EHF ) W XW w N A W, X * * w A N HF stability quadratic form N, thus X Hermitian N cˆ cˆ ( Hˆ E ) cˆ cˆ ( ) V V A, HF,,, cˆ cˆ cˆ cˆ ( Hˆ E ) cˆ cˆ cˆ, HF ĉ Hˆ V V,, 11

TD Hartree-Fock (Thouless approach) : ˆ 1 H ( H ) cˆˆ c V cˆ cˆ cˆ cˆ sp lk l k lk, jm l j m k l, k l, k, j, m N 1 ˆ c Slater det. ansatz occupied E HF i t w() t cˆ cˆ ( t) f ( t) e e Small variations empty ˆ d ( t) H i ( t) Variational principle dt w ( t) u e v e int * int n, n, n N A un un Bosonic Bogoliubov-de Gennes * n A N v n v n 1

Conclusions from BdG analogy: There is a BdG Scalar product Stable system: positive energy modes carry positive normalization and vice versa Modes come in pairs ω, -ω* If A=, there are no dynamical instabilities (DI) CAF and PLP phases are candidates to DI, but before that they are energetically unstable F and FLP have no DI No DI if the stability matrix is positive Continuous degeneracy of non-symmetric modes are gapless The following mode analysis ensures that Hund s rule states are local minima 13

Collective neutral excitations I Magneto-exciton (MO) wave functions 1 M e c c N ˆ iq kxlb ( ) ˆ ˆ nn k ky 1 M e c N B q ky n, q, n, q, ˆ iq kxlb ( ) ˆ ˆ n n k k c y ab, Occupied HF levels B q ky n, q, n, q, k momentum of the magnetoexciton (conserved) n,1 Landau orbital k y q Landau gauge momentum, ' K, K c,d Empty HF levels ˆ ( k, t) M ( k, t) e Mˆ ( k, t) u ( k) Mˆ ( k) e v ( k) Mˆ ( k) e i( k) t * i( k) t 1 u e u p p i kxb l ( k) p p, ky NB p, p 1 v e v p p i kxb l ( k) p p, k, y NB p, p 14

Magneto-exciton (MO) symmetries Lie algebras generators 1 Sˆ ˆ ˆ i cn, p,, ( i ) cn, p,, np,,, ˆ 1 L cˆ ( T ) cˆ i n, p,, i, n, p,, np,,, ˆ 1 O cˆ ( ) cˆ i n, p,, i nn n, p,, p,, n, n MO transformation properties (here shown spin, similar valley and orbital) ˆ ˆ ˆ [ S, M ( k)] ( G ) M ( k) i n n i, n n 1 ( G ) ( ) ( ) i, i i Collective neutral excitations II MO spin triplet: Mˆ ( k) Mˆ ( k) nn11 n n 1 Mˆ ˆ ˆ nn1( k) M n n ( ) M n n ( ) k k Mˆ ( k) Mˆ ( k) nn11 n n MO spin singlet: 1 Mˆ ˆ ˆ nn( k) M n n ( ) M n n ( ) k k H conmutes with: S, L, Sˆ, Lˆ z z MO diagonal in OO z (k = ) Isotropic system: => no direction dependence k : k 15

F phase: Ground state: L, L z =, S, S z = 4N B / MO: S = 1, S = 1 z LL z (k) ω OOz Collective neutral excitations III Spin-flip: L = 1, L z = ω 1 k = = F-CAF (Goldstone) Full-flip: L = 1 L z = ±1 ω 11 k = = F-FLP (gapless) Continuous degeneracy of states: ( ) cos( ) exp itan Mˆ z z ( k ) () ( / ) FM NB OO, LL 11 FM FLP Indices: Valley L, L z Spin S, S z Orbital pseudo-spin O, O z (k= prolongation of the MO) M k ω OOz ω k = < ω 11 k = = M k = <ω 1 k = =ω 1 1 ω M k = = marks the phase Boundaries 16

Collective neutral excitations IV N =,1,,3 => OO z =,11,1 1,1 17

Collective neutral excitations V CAF phase: Ground state: L z = MO: L z Prolongation of F spin-flip MO: L ω z =,± OOz (k) L z =,± k = = CAF-F (Goldstone) ω Hybridized prolongation of F full-flip MO: L ω z =±1 OOz (k) ω 11 k = = CAF-PLP (gapless) Can be complex inside the PLP stable region Indices: Valley L, L z Spin S, S z Orbital pseudo-spin O, O z (k= prolongation of the MO) M k ω OOz ω k = < ω 11 k = = M k = <ω 1 k = =ω 1 1 ω M k = = marks the phase boundaries 18

Collective neutral excitations VI N =,1,,3 => OO z =,11,1 1,1 19

Collective neutral excitations VII PLP phase: Ground state: S, S z =, L, L n = 4N B / MO: L = 1, L n = 1 SS z (k) ω OOz Prolongation of FLP valley-flip MO: ω S OOz (k) k = = FLP-PLP (Goldstone) ω Hybridized prolongation of FLP full-flip MO: ω 1±1 OOz (k) ω 11 k = = PLP-CAF (gapless) Can be complex inside the CAF stable region Indices: Valley L, L z Spin S, S z Orbital pseud-spin O, O z (k= prolongation of the MO) M k ω OOz ω k = < ω 11 k = = M k = <ω 1 k = =ω 1 1 ω M o k = = marks the phase boundaries