An introduction to some aspects of functional analysis

Similar documents
Some topics in analysis related to Banach algebras, 2

Overview of normed linear spaces

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

CHAPTER V DUAL SPACES

Introduction to Real Analysis Alternative Chapter 1

CHAPTER VIII HILBERT SPACES

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

Problem Set 6: Solutions Math 201A: Fall a n x n,

MATH 426, TOPOLOGY. p 1.

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

Real Analysis Notes. Thomas Goller

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

Introduction and Preliminaries

Chapter 1: Banach Spaces

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

MTH 503: Functional Analysis

Functional Analysis Exercise Class

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

I teach myself... Hilbert spaces

1 Functional Analysis

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide

Examples of Dual Spaces from Measure Theory

l(y j ) = 0 for all y j (1)

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

Normed Vector Spaces and Double Duals

Chapter 2 Metric Spaces

Appendix A Functional Analysis

Tools from Lebesgue integration

Spectral Theory, with an Introduction to Operator Means. William L. Green

Banach Spaces II: Elementary Banach Space Theory

CHAPTER I THE RIESZ REPRESENTATION THEOREM

MATHS 730 FC Lecture Notes March 5, Introduction

(convex combination!). Use convexity of f and multiply by the common denominator to get. Interchanging the role of x and y, we obtain that f is ( 2M ε

Compact operators on Banach spaces

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

THEOREMS, ETC., FOR MATH 515

The weak topology of locally convex spaces and the weak-* topology of their duals

A VERY BRIEF REVIEW OF MEASURE THEORY

Functional Analysis HW #5

Your first day at work MATH 806 (Fall 2015)

E.7 Alaoglu s Theorem

Normed vector spaces

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

The following definition is fundamental.

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

Ordinary differential equations. Recall that we can solve a first-order linear inhomogeneous ordinary differential equation (ODE) dy dt

Your first day at work MATH 806 (Fall 2015)

Functional Analysis I

Lectures on Analysis John Roe

Lebesgue Integration on R n

Class Notes for MATH 255.

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES

MAA6617 COURSE NOTES SPRING 2014

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Math 209B Homework 2

Stone-Čech compactification of Tychonoff spaces

CHAPTER II THE HAHN-BANACH EXTENSION THEOREMS AND EXISTENCE OF LINEAR FUNCTIONALS

Topological vectorspaces

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

01. Review of metric spaces and point-set topology. 1. Euclidean spaces

A SYNOPSIS OF HILBERT SPACE THEORY

Chapter 1. Introduction

212a1214Daniell s integration theory.

Real Analysis: Part II. William G. Faris

Functional Analysis HW #3

Summary of Real Analysis by Royden

Functional Analysis MATH and MATH M6202

Metric Spaces and Topology

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Hilbert Space Methods Used in a First Course in Quantum Mechanics A Recap WHY ARE WE HERE? QUOTE FROM WIKIPEDIA

L p Spaces and Convexity

Banach Spaces V: A Closer Look at the w- and the w -Topologies

Lecture 4 Lebesgue spaces and inequalities

Problem 1: Compactness (12 points, 2 points each)

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces

In Chapter 14 there have been introduced the important concepts such as. 3) Compactness, convergence of a sequence of elements and Cauchy sequences,

Exercise Solutions to Functional Analysis

Sobolev Spaces. Chapter Hölder spaces

ANALYSIS WORKSHEET II: METRIC SPACES

Class Notes for MATH 454.

Analysis II Lecture notes

Some Background Material

1 Inner Product Space

Functional Analysis HW #1

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India

Functional Analysis. Thierry De Pauw

MA3051: Mathematical Analysis II

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Continuity of convex functions in normed spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces

NUCLEAR SPACE FACTS, STRANGE AND PLAIN

Transcription:

An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms on vector spaces, bounded linear operators, and dual spaces of bounded linear functionals in particular. Contents 1 Norms on vector spaces 3 2 Convexity 4 3 Inner product spaces 5 4 A few simple estimates 7 5 Summable functions 8 6 p-summable functions 9 7 p = 2 10 8 Bounded continuous functions 11 9 Integral norms 12 10 Completeness 13 11 Bounded linear mappings 14 12 Continuous extensions 15 13 Bounded linear mappings, 2 15 14 Bounded linear functionals 16 1

15 l 1 (E) 18 16 c 0 (E) 18 17 Hölder s inequality 20 18 l p (E) 20 19 Separability 22 20 An extension lemma 22 21 The Hahn Banach theorem 23 22 Complex vector spaces 24 23 The weak topology 24 24 Seminorms 25 25 The weak topology, 2 26 26 The Banach Alaoglu theorem 27 27 The weak topology 28 28 Seminorms, 2 28 29 Convergent sequences 30 30 Uniform boundedness 31 31 Examples 32 32 An embedding 33 33 Induced mappings 33 34 Continuity of norms 34 35 Infinite series 35 36 Some examples 36 37 Quotient spaces 37 38 Quotients and duality 38 39 Dual mappings 39 2

40 Second duals 39 41 Continuous functions 41 42 Bounded sets 42 43 Hahn Banach, revisited 43 References 44 1 Norms on vector spaces Let V be a vector space over the real numbers R or the complex numbers C. A norm on V is a nonnegative real-valued function v defined for v V such that (1.1) v = 0 if and only if v = 0, (1.2) t v = t v for every v V and t R or C, as appropriate, and (1.3) v + w v + w for every v, w V. Here t is the absolute value of t when t R, and the modulus of t when t C. For example, if V is the one-dimensional vector space R or C, then the absolute value or modulus defines a norm on V, and every norm on V is a positive multiple of this norm. More generally, let n be a positive integer, and let V be the space R n or C n of n-tuples v = (v 1,..., v n ) of real or complex numbers. As usual, this is a vector space with respect to coordinatewise addition and scalar multiplication. The standard Euclidean norm on V is given by (1.4) ( n v = v j 2) 1/2. It is well-known that this is a norm, although the triangle inequality (1.3) is not immediately obvious. A couple of ways to show the triangle inequality in this case will be reviewed in the next sections. It is easy to see directly that (1.5) n v 1 = v j satisfies the triangle inequality. Hence v 1 defines a norm on R n, C n. Similarly, (1.6) v = max( v 1,..., v n ) 3

defines a norm on R n, C n. The standard Euclidean norm on R n, C n is sometimes denoted v 2. If v is a norm on a real or complex vector space V, then (1.7) d(v, w) = v w defines a metric on V. For instance, the standard Euclidean metric on R n or C n is the same as the metric associated to the standard Euclidean norm in this way. The metrics on R n or C n associated to the norms v 1, v determine the same topology as the standard Euclidean metric, and we shall say more about this soon. The main point is that v 1, v 2, and v are equivalent norms on R n and C n for each positive integer n, in the sense that each is bounded by constant multiples of the others. 2 Convexity Let V be a real or complex vector space. As usual, a set E V is said to be convex if for every x, y E and real number t with 0 < t < 1, we have that (2.1) t x + (1 t)y is also an element of E. If v is a norm on V, then the closed unit ball (2.2) B 1 = {v V : v 1} is a convex set in V. Similarly, the open unit ball (2.3) {v V : v < 1} is also a convex set in V. Conversely, suppose that v is a nonnegative real-valued function on V which is positive when v 0 and satisfies the homogeneity condition (1.2). If the corresponding closed unit ball B 1 is convex, then one can check that v satisfies the triangle inequality, and is thus a norm. For if v, w are nonzero vectors in V, then (2.4) v = v v, w = w w have norm 1, and the convexity of B 1 implies that (2.5) v w v + w v + v + w w has norm less than or equal to 1. Equivalently, (2.6) v + w v + w B 1, which implies (1.3). 4

Let n be a positive integer, let p be a positive real number, and consider (2.7) ( n v p = v j p) 1/p for v R n or C n. This is the same as the standard Euclidean norm when p = 2, and is easily seen to be a norm when p = 1, as in the previous section. Let us check that the closed unit ball associated to v p is convex when p > 1, so that v p defines a norm in this case. This does not work for p < 1, even when n = 2. Suppose that v, w R n or C n satisfy v p, w p 1, which is the same as (2.8) n v j p, n w j p 1. If p 1 and 0 < t < 1, then (2.9) t v j + (1 t)w j p (t v j + (1 t) w j ) p t v j p + (1 t) w j p for each j, because of the convexity of the function f(x) = x p on the positive real numbers. Summing over j, we get that (2.10) n n n t v j + (1 t)w j p t v j p + (1 t) w j p 1. This implies that (2.11) as desired. t v + (1 t)w p 1, 3 Inner product spaces An inner product on a real or complex vector space V is a real or complex-valued function v, w defined for v, w V, as appropriate, which satisfies the following conditions. First, v, w is linear as a function of v for each w V. Second, (3.1) w, v = v, w for every v, w V in the real case, while (3.2) w, v = v, w in the complex case. Here z denotes the complex conjugate of z C, defined by (3.3) z = x y i 5

when z = x + y i and x, y R. It follows from this symmetry condition that v, w is linear in w in the real case, and conjugate-linear in w in the complex case. It also follows that (3.4) v, v R for every v V, even in the complex case. The third requirement of an inner product is that (3.5) v, v > 0 for every v V with v 0, and of course the inner product is equal to 0 when v = 0. If v, w is an inner product on V, then the Cauchy Schwarz inequality states that (3.6) v, w v, v 1/2 w, w 1/2 for every v, w V. Because of homogeneity, it suffices to show that (3.7) v, w 1 when (3.8) v, v = w, w = 1, since the inequality is trivial when v or w is 0. To do this, one can use the fact that (3.9) v + t w, v + t w 0 for every t R or C, and expand the inner product to estimate v, w. The norm on V associated to the inner product is defined by (3.10) v = v, v 1/2. This clearly satisfies the positivity and homogeneity requirements of a norm. In order to verify the triangle inequality, one can use the Cauchy Schwarz inequality to get that (3.11) v + w 2 = v + w, v + w = v, v + v, w + w, v + w, w v 2 + 2 v w + w 2 = ( v + w ) 2 for every v, w V. The standard inner product on R n is defined by (3.12) v, w = n v j w j. Similarly, the standard inner product on C n is defined by (3.13) v, w = n v j w j. The corresponding norms are the standard Euclidean norms. 6

4 A few simple estimates Observe that (4.1) v v p for each v R n or C n and p > 0. If 0 < p < q <, then n n (4.2) v j q v q p v j p for every v R n or C n, and hence (4.3) v q v 1 (p/q) v p/q p v p. Thus v p is monotone decreasing in p. In the other direction, (4.4) v p n 1/p v for each v R n or C n and p > 0. If 0 < p < q <, then (4.5) v p n (1/p) (1/q) v q. To see this, remember that f(x) = x r is a convex function of x 0 when r 1, so that ( 1 n ) r 1 n (4.6) a j a r j n n for any nonnegative real numbers a 1,...,a n. Applying this with r = q/p, we get that ( 1 n v j p) q/p 1 n (4.7) v j q, n n or (4.8) as desired. The fact that (4.9) ( 1 n n v j p) 1/p ( 1 n v 1 v p n v j q) 1/q, when 0 < p < 1 and n = 2 can be re-expressed as (4.10) for every a, b 0. It follows that n (4.11) v j + w j p (a + b) p a p + b p n v j p + n w j p for every v, w R n or C n when 0 < p < 1, and hence (4.12) v + w p p v p p + w p p. This is a natural substitute for the triangle inequality in this case. 7

5 Summable functions Let E be a nonempty set, and let f(x) be a nonnegative real-valued function on E. If E has only finitely many elements, then the sum (5.1) f(x) x E is defined in the usual way. Otherwise, (5.1) is defined to be the supremum of (5.2) f(x) x E 1 over all finite subsets E 1 of E, which may be +. If there is a finite upper bound for the subsums (5.2), so that (5.1) is finite, then we say that f is summable on E. Note that f is summable on E if there is a nonnegative summable function F on E such that f(x) F(x) for every x E. If f 1, f 2 are nonnegative functions on E, then (5.3) 1 (x) + f 2 (x)) = x E(f f 1 (x) + f 2 (x). x E x E This is easy to see, with the standard convention that (5.4) a + = + a =, 0 a. In particular, f 1 + f 2 is summable on E when f 1 and f 2 are summable on E. Similarly, if f is a nonnegative function on E and t 0, then (5.5) t f(x) = t f(x). x E x E This uses the conventions that t = when t > 0, and 0 = 0. A real or complex-valued function f on E is said to be summable on E if f(x) is summable on E. It follows from the previous remarks that the summable functions on E form a linear subspace of the vector space of real or complex-valued functions on E, with respect to pointwise addition and scalar multiplication. If f is a summable function on E and ǫ > 0, then the set (5.6) E ǫ (f) = {x E : f(x) ǫ} has only finitely many elements, and hence (5.7) E(f) = {x E : f(x) 0} has only finitely or countably many elements. More precisely, E ǫ (f) 1 (5.8) f(x), ǫ 8 x E

where E ǫ (f) denotes the number of elements of E ǫ (f). If f is a real or complex-valued summable function on E, then the sum (5.1) can be defined in various equivalent ways. One way is to express f as a linear combination of nonnegative summable functions, and then use the definition of the sum in that case. Another way is to enumerate the elements of E(f) in a sequence, and treat the sum as an infinite series. A basic property of the sum is that (5.9) f(x) f(x) x E x E for any summable function f on E. As usual, the sum of a summable function is also linear in the function. 6 p-summable functions Let E be a nonempty set, and let p be a positive real number. A real or complexvalued function f on E is said to be p-summable if f(x) p is a summable function on E. Thus p-summability is the same as summability when p = 1. One can check that the spaces (6.1) l p (E,R), l p (E,C) of p-summable real and complex-valued functions on E are linear subspaces of the vector spaces of all such functions on E. This can be extended to p = by taking l (E,R), l (E,C) to be the spaces of bounded real and complex-valued functions on E. If f is a p-summable function on E for some p, 0 < p <, then we put (6.2) ( f p = f(x) p) 1/p. x E Here the sum over E is defined to be the supremum over all finite subsums, as in the previous section. Similarly, if f is a bounded function on E, then we put (6.3) f = sup{ f(x) : x E}. It is easy to see that (6.4) f 1 + f 2 p f 1 p + f 2 p when f 1, f 2 l p (E,R) or l p (E,C) and 1 p, so that f p defines a norm on these spaces in this case. This is quite straightforward when p = 1,, and can be obtained from the corresponding statement for finite sums when 1 < p <. If 0 < p < 1 and f 1, f 2 are p-summable functions on E, then (6.5) f 1 + f 2 p p f 1 p p + f 2 p p. This can be derived using the same argument as for finite sums. If f is p-summable, 0 < p <, then f is bounded, and (6.6) f f p. 9

Moreover, f is q-summable for each q > p, and (6.7) f q f p. This can be shown in the same way as for finite sums. A function f on E is said to vanish at infinity if for each ǫ > 0 there are only finitely many x E such that f(x) ǫ. The spaces (6.8) c 0 (E,R), c 0 (E,C) of real and complex-valued functions vanishing at infinity on E are linear subspaces of the corresponding spaces of bounded functions on E. These are proper linear subspaces when E has infinitely many elements, and otherwise every function on E is bounded and vanishes at infinity when E has only finitely many elements. As in the previous section, p-summable functions vanish at infinity for each 0 < p <. 7 p = 2 It is well known that (7.1) for every a, b 0, since (7.2) a b a2 + b 2 2 0 (a b) 2 = a 2 2 a b + b 2. If f 1, f 2 are square-summable functions on a nonempty set E, then it follows that f 1 (x) f 2 (x) f 1(x) 2 + f 2(x) 2 (7.3) 2 2 for every x E, and hence (7.4) f 1 (x) f 2 (x) 1 f 1 (x) 2 + 1 f 2 (x) 2 <. 2 2 x E x E This implies that the product f 1 (x)f 2 (x) is summable on E. Alternatively, one can get the same conclusion using the Cauchy Schwarz inequality for finite sums to show that ( f 1 (x) f 2 (x) f 1 (x) 2) 1/2 ( f 2 (x) 2) 1/2 (7.5). x E x E x E x E At any rate, this permits us to define an inner product on l 2 (E,R) by (7.6) f 1, f 2 = x E f 1 (x)f 2 (x), 10

and on l 2 (E,C) by (7.7) f 1, f 2 = x E f 1 (x)f 2 (x). These are basically the same as the standard inner products on R n and C n when E is a finite set with n elements. The norms associated to these inner products are the same as f 2 defined in the previous section. 8 Bounded continuous functions Let X be a topological space, and let (8.1) C b (X,R), C b (X,C) be the spaces of bounded continuous real or complex-valued functions on X. As usual, these are vector spaces with respect to pointwise addition and scalar multiplication. If X is compact, then every continuous function on X is bounded, and we may drop the subscript b. The supremum norm of a bounded continuous function f is defined by (8.2) f = sup{ f(x) : x X}. It is easy to see that this defines a norm on these vector spaces. Of course, constant functions on X are automatically bounded and continuous. If X is equipped with the discrete topology, then every function on X is continuous. Locally compact Hausdorff spaces form a nice class of topological spaces. If X is such a space, K X is compact, and V X is an open set with K V, then it is well known that there is a continuous real-valued function f on X such that (8.3) f(x) = 1 when x K, (8.4) when x X\V, and (8.5) f(x) = 0 0 f(x) 1 for every x X. In particular, there are plenty of bounded continuous functions on X in this case. A continuous function f on X is said to vanish at infinity if for every ǫ > 0 there is a compact set K X such that (8.6) f(x) < ǫ for every x X\K. If X is equipped with the discrete topology, then the compact subsets of X are the same as the finite sets, and this definition reduces to the previous one in the context of summable functions. For any X, the space 11

of real or complex-valued continuous functions on X that vanish at infinity may be denoted (8.7) C 0 (X,R), C 0 (X,C). It is easy to see that these are linear subspaces of the corresponding spaces of bounded continuous functions on X, since continuous functions are bounded on compact sets. If X is compact, then every continuous function on X vanishes at infinity trivially. The support of a continuous function f on X is the closure of the set where f 0, i.e., (8.8) suppf = {x X : f(x) 0}. The spaces of real or complex-valued continuous functions on X with compact support may be denoted (8.9) C 00 (X,R), C 00 (X,C). These are linear subspaces of the corresponding spaces of continuous functions on X that vanish at infinity, and are the same as the spaces of all continuous functions on X when X is compact. There are a lot of continuous functions with compact support on locally compact Hausdorff spaces, as before. 9 Integral norms Let f be a continuous real or complex-valued function on the closed unit interval [0, 1] in the real line. For each positive real number p, put (9.1) ( 1 1/p. f p = f(x) dx) p 0 This obviously satisfies the triangle inequality when p = 1, and one can show that it also holds for p > 1 using the same argument as for finite sums. Thus f p defines a norm on the vector space of continuous functions on [0, 1] when p 1. If 0 < p < 1, then (9.2) f 1 + f 2 p p f 1 p p + f 2 p p for all continuous functions f 1, f 2 on [0, 1]. We also have that (9.3) f p f for each continuous function f on [0, 1] and every p > 0, where f is the supremum norm of f, as in the previous section. If 0 < p < q <, then one can check that (9.4) f p f q, using convexity as in Section 4. 12

Now let f be a continuous real or complex-valued function on the real line with compact support. For each p > 0, consider (9.5) ( 1/p. f p = f(x) dx) p More precisely, the integral here can be reduced to one on a bounded interval, since f has compact support. As before, this defines a norm on the vector space of continuous functions on R with compact support when p 1, and satisfies the usual substitute for the triangle inequality when 0 < p < 1. However, f p is normally neither monotone increasing nor decreasing in p in this case. If p = 2, then these norms associated to suitable inner products. On the unit interval, these inner products are given by (9.6) in the real case, and (9.7) f 1, f 2 = f 1, f 2 = 1 0 1 0 f 1 (x)f 2 (x)dx f 1 (x)f 2 (x) dx in the complex case. The inner products on continuous functions with compact support on R are defined similarly. Of course, there are analogous norms and inner products for other situations in which integration is defined. This includes sums over discrete sets as another special case. 10 Completeness Remember that a metric space (M, d(x, y)) is said to be complete if every Cauchy sequence in M converges to an element of M. If M is complete and N M, then N is complete with respect to the restriction of d(x, y) to x, y N if and only if N is a closed set in M. Let V be a real or complex vector space equipped with a norm and hence a metric, as in Section 1. If V is complete with respect to this metric, then V is said to be a Banach space. If the norm is also associated to an inner product, then V is said to be a Hilbert space. It is well known that the real line is complete with respect to the standard metric, and that consequently R n and C n are complete for each n. One can use this to show that the l p (E) spaces are complete with respect to the p-norm f p for every nonempty set E and 1 p. For if {f j } is a Cauchy sequence of functions on E with respect to the p-norm for some p, then {f j (x)} is a Cauchy sequence of real or complex numbers for each x E. Hence {f j } converges pointwise to a function f on E, and one can use the fact that the norms f j p are uniformly bounded in j to show that f l p (E). Using the Cauchy condition for {f j } in lp (E), one can also show that {f j } converges 13

to f in l p (E). Similarly, l p (E) is complete when 0 < p < 1, with respect to the metric (10.1) f 1 f 2 p p. In addition, one can check that c 0 (E) is a closed subspace of l (E), and is thus complete with respect to the supremum norm. The space C b (X) of bounded continuous functions on any topological space X is complete with respect to the supremum norm. As in the previous paragraph, one can first show that a Cauchy sequence in C b (X) converges pointwise, and then use the Cauchy condition with respect to the supremum norm to check that the sequence converges uniformly, and that the limit is also bounded and continuous. The space C 0 (X) of continuous functions that vanish at infinity on X is a closed subspace of C b (X), and hence also complete with respect to the supremum norm. However, the space of continuous functions on the unit interval is not complete with respect to the integral norm f p for any p, 1 p <, nor with respect to the metric f 1 f 2 p p when 0 < p < 1. The completions of these spaces can be described in terms of the Lebesgue integral. 11 Bounded linear mappings Let V and W be vector spaces, both real or both complex, and equipped with norms V, W, respectively. A linear mapping T : V W is said to be bounded if there is an A 0 such that (11.1) T(v) W A v V for every v V. It is easy to see that every linear mapping is bounded when V is R n or C n for some positive integer n. If V = W with the same norm, then the identity mapping I(v) = v is bounded, with A = 1. If T is a linear mapping from V into W that satisfies (11.1), then (11.2) T(v 1 ) T(v 2 ) W A v 1 v 2 V for every v 1, v 2 V, and it follows that T : V W is uniformly continuous. Conversely, if a linear mapping T : V W is continuous at the origin, then it is bounded. For if there is a δ > 0 such that (11.3) T(v) W < 1 when v V satisfies v V < δ, then (11.1) holds with A = 1/δ. A linear mapping from a real or complex vector space V into the real or complex numbers, as appropriate, is also known as a linear functional on V. A linear functional on a vector space V with a norm V is bounded if it is bounded with respect to the standard norm on R or C. Remember that the kernel of a linear mapping T : V W is the linear subspace of V consisting of the v V such that T(v) = 0. By continuity, the kernel of a bounded linear mapping is a closed subspace of V. Conversely, one can show that a linear functional on V is bounded when its kernel is closed. 14

12 Continuous extensions Let (M, d(x, y)) and (N, ρ(u, v)) be metric spaces. If N is complete, then every uniformly continuous mapping from a dense subset of M into N has a unique extension to a uniformly continuous mapping from M into N. Ordinary continuity is sufficient for uniqueness of the extension, but uniform continuity is needed for its existence. Now let V and W be vector spaces, both real or both complex, and equipped with norms. If W is complete, then every bounded linear mapping from a dense linear subspace of V into W has a unique extension to a bounded linear mapping from V into W. Bounded linear mappings are automatically uniformly continuous, as in the previous section, and the remaining point to check is that the extension is also linear in this case. One can use the same constant A as in (11.1) for the extension as for the initial mapping too. For example, let E be an infinite set, and let V be the space of real or complex-valued summable functions on E. It is easy to see that the space of functions f on E such that f(x) 0 for only finitely many x E is dense in l 1 (E) with respect to the l 1 norm. For each f in this subspace, the sum (12.1) f(x) x E can be defined in the obvious way, and satisfies (12.2) f(x) f(x) = f 1. x E x E Hence there is a unique extension of (12.1) to a bounded linear functional on l 1 (E). This gives another approach to the definition of the sum of a summable function, as in Section 5. 13 Bounded linear mappings, 2 Let V and W be vector spaces, both real or both complex. The space L(V, W) of linear mappings from V into W is also a vector space in a natural way, since the sum of two linear mappings from V into W is also a linear mapping, as is the product of a linear mapping with a real or complex number, as appropriate. If V and W are equipped with norms V and W, respectively, then one can check that the space BL(V, W) of bounded linear mappings from V into W is a linear subspace of L(V, W). The operator norm of a bounded linear mapping T : V W is defined by (13.1) Equivalently, (13.2) T op = sup{ T(v) W : v V, v V 1}. T(v) W T op v V 15

for every v V, and T op is the smallest number with this property, which is to say the smallest value of A for which (11.1) holds. It is easy to see that the operator norm defines a norm on the vector space BL(V, W). For example, if V = W with the same norm, then the identity mapping I(v) = v has operator norm equal to 1. Suppose that V 1, V 2, and V 3 are vector spaces, all real or all complex, and equipped with norms. If T 1 : V 1 V 2 and T 2 : V 2 V 3 are bounded linear mappings, then their composition T 2 T 1 : V 1 V 3, defined by (13.3) (T 2 T 1 )(v) = T 2 (T 1 (v)), v V, is also a bounded linear mapping. Moreover, (13.4) T 2 T 1 op,13 T 1 op,12 T 2 op,23, where the subscripts indicate which spaces are involved in the operator norms. If W is complete, then one can show that the space of bounded linear mappings from V into W is complete with respect to the operator norm. For if {T j } is a Cauchy sequence in BL(V, W), then {T j(v)} is a Cauchy sequence in W for each v V, and hence converges in W. The limit determines a linear mapping T : V W, and one can use the boundedness of the operator norms of the T j s to show that T is bounded too. Using the Cauchy condition again, one can show that {T j } converges to T in the operator norm, as desired. 14 Bounded linear functionals Let V be a real or complex vector space equipped with a norm. As in Section 11, a bounded linear functional on V is a bounded linear mapping from V into the real or complex numbers, as appropriate. The dual space V of bounded linear functionals is thus the same as BL(V,R) or BL(V,C), and the dual norm on V is defined to be the corresponding operator norm, using the standard norm on R or C. In particular, V is automatically complete with respect to the dual norm, as in the previous section. Suppose that the norm v on V is associated to an inner product v, w. Each w V determines a linear functional λ w on V, defined by (14.1) λ w (v) = v, w. The Cauchy Schwarz inequality implies that λ w is a bounded linear functional on V, and that (14.2) λ w = w. If V has finite dimension, then every linear functional on V is of the form λ w for some w V. If V is a Hilbert space, then every bounded linear functional on V is of this form. 16

To see this, let λ be a bounded linear functional on V, which we may as well suppose is not identically equal to 0. Thus λ(z) = 1 for some z V, and we can put (14.3) ρ = inf{ z : z V, λ(z) = 1}. Let {z j } be a sequence of elements of V such that λ(z j) = 1 for each j and (14.4) lim z j = ρ. j We would like to show that {z j } is a Cauchy sequence in V, and hence converges when V is a Hilbert space. Because the norm is associated to an inner product, we have the parallelogram law v + w 2 + v w (14.5) 2 = v 2 + w 2 2 2 2 2 for every v, w V. We want to apply this to terms of the sequence in order to show that (14.6) z j z l 0 as j, l. For each j, l 1, λ(z j ) = λ(z l ) = 1, which implies that ( zj + z ) l (14.7) λ = 1, 2 and hence z j + z l (14.8) ρ. 2 Using the parallelogram law, this implies in turn that ρ 2 + z j z l 2 z j 2 + z l 2 (14.9) 2 2 2. It follows that {z j } is a Cauchy sequence, since z j, z l ρ as j, l. Assuming that V is a Hilbert space, we get that {z j } converges to an element z of V. By construction, λ(z) = 1, and z = ρ is minimal among vectors with this property. If v V is in the kernel of λ, so that λ(v) = 0, then v is orthogonal to z, which is to say that (14.10) v, z = 0. This is because (14.11) λ(z + t v) = 1 for every t R or C, as appropriate, and hence (14.12) z + t v z by minimality, which implies orthogonality, as in calculus. If w = z/ z 2, then it follows that (14.13) λ(v) = v, w = λ w (v) for every v V, as desired. 17

15 l 1 (E) Let E be a nonempty set, and let h be a bounded real or complex-valued function on E. If f is a summable function on E, then f h is a summable function on E, and we can put (15.1) λ h (f) = f(x)h(x). x E This defines a bounded linear functional on l 1 (E), since (15.2) λ h (f) x E f(x) h(x) h f 1. For each y E, let δ y be the function on E defined by δ y (x) = 0 when x y and δ y (y) = 1. Thus δ y 1 = 1 and (15.3) λ h (δ y ) = h(y) for each y E, and one can use this to show that (15.4) λ h 1, = h, where 1, denotes the dual norm with respect to the norm f 1 on l 1 (E). Conversely, suppose that λ is a bounded linear functional on l 1 (E). For each y E, put (15.5) h(y) = λ(δ y ). Thus (15.6) h(y) λ 1, for each y E, since δ y 1 = 1. Equivalently, h is bounded on E, and (15.7) h λ 1,. It remains to show that λ = λ h as linear functionals on l 1 (E). More precisely, we want to show that for each f l 1 (E), (15.8) λ(f) = λ h (f) If f(x) 0 for only finitely many x E, then f is a linear combination of finitely many δ y s, and this holds by linearity. Because these functions are dense in l 1 (E), the same conclusion holds for every f l 1 (E), by continuity. 16 c 0 (E) Let E be a nonempty set, and let h be a summable real or complex-valued function on E. If f is a bounded function on E, then f h is a summable function on E, and we can put (16.1) λ h (f) = f(x)h(x). x E 18

This defines a bounded linear functional on l (E), since (16.2) λ h (f) x E f(x) h(x) h 1 f. If we choose f so that f = 1 and (16.3) f(x)h(x) = h(x) for each x E, then (16.4) λ h (f) = h 1, at it follows the dual norm of λ h on l (E) is equal to h 1. We can also restrict λ h to a bounded linear functional on c 0 (E) with dual norm less than or equal to h 1. If E 1 E has only finitely many elements, then we can choose a function f on E such that f(x) = 0 on E\E 1, f = 1, and (16.3) holds on E 1. Thus f c 0 (E) and (16.5) λ h (f) = h(x), x E 1 and one can use this to show that the dual norm of the restriction of λ h to c 0 (E) is still equal to h 1, by taking the supremum over all finite subsets E 1 of E. Now let λ be any bounded linear functional on c 0 (E). As in the previous section, we can define a function h on E by (16.6) By construction, (16.7) h(y) = λ(δ y ). λ(f) = x E f(x)h(x) when f(x) 0 for only finitely many x E. If E 1 E has only finitely many elements, then we can choose f as in the preceding paragraph to get that (16.8) h(x) x E 1 is less than or equal to the dual norm of λ on c 0 (E). It follows that h is a summable function on E, and that h 1 is less than or equal to the dual norm of λ on c 0 (E). It remains to check that (16.9) λ(f) = λ h (f) for every f c 0 (E). We already know that this holds when f(x) 0 for only finitely many x E, and it holds for every f c 0 (E) by continuity, since these functions are dense in c 0 (E). 19

17 Hölder s inequality Let 1 < p < be given, and let 1 < q < be the conjugate exponent, characterized by (17.1) 1 p + 1 q = 1. If a and b are nonnegative real numbers, then (17.2) a b ap p + bq q. This can be seen as a consequence of the convexity of the exponential function, and the p = q = 2 case is elementary, as in Section 7. Suppose that f, h are real or complex-valued functions on a nonempty set E. As in the previous paragraph, (17.3) f(x) h(x) f(x) p p + h(x) q q for every x E. If f is p-summable and h is q-summable, then it follows that f h is summable on E, with (17.4) Equivalently, (17.5) f(x) h(x) 1 f(x) p + 1 h(x) q. p q x E x E f h 1 f p p p If f p = h q = 1, then we get that + h q q. q x E (17.6) f h 1 1. This implies for any f l p (E) and h l q (E) that (17.7) f h 1 f p h q, by homogeneity. This is Hölder s inequality. The analogous statement also holds for p = 1 and q = 1, and was implicitly used in the previous two sections. 18 l p (E) Let 1 < p, q < be conjugate exponents again, and let h be a q-summable function on a nonempty set E. If f is a p-summable function on E, then f h is summable, and we can put (18.1) λ h (f) = x E f(x)h(x). 20

This defines a bounded linear functional on l p (E), since (18.2) λ h (f) h q f p, by Hölder s inequality. If we choose f so that (18.3) f(x)h(x) = h(x) q for every x E, and f(x) = 0 when h(x) = 0, then (18.4) f(x) = h(x) q 1, and (18.5) f(x) p = h(x) q, since p(q 1) = q. In this case, (18.6) λ h (f) = h q q = h q f p, and it follows that the dual norm of λ h on l p (E) is h q. Now let λ be any bounded linear functional on l p (E), and let h be the function on E defined by h(y) = λ(δ y ), so that (18.7) λ(f) = x E f(x)h(x) when f(x) 0 for only finitely many x E. If E 1 E has only finitely many elements, then we can choose f so that f(x) = 0 when x E\E 1 or h(x) = 0 and (18.3) holds for every x E 1, and we get that (18.8) We also have that (18.9) which implies that (18.10) λ h (f) = x E 1 h(x) q. ( f p = h(x) q x E 1 ( x E 1 h(x) q ) 1/q ) 1/p, is bounded by the dual norm of λ on l p (E). It follows that h is q-summable, and that h q is less than or equal to the dual norm of λ on l p (E). The remaining point is that λ(f) = λ h (f) for every f l p (E). This holds by construction when f(x) 0 for only finitely many x E, and it is easy to see that these functions are dense in l p (E). Thus λ(f) = λ h (f) for every f l p (E) by continuity. 21

19 Separability Remember that a metric space is said to be separable if it contains a dense set with only finitely or countably many elements. For example, the real line is separable, because the rationals are countable and dense. Similarly, R n and C n are separable for each positive integer n. Let V be a real or complex vector space equipped with a norm. If there is a set A V with only finitely or countably many elements whose span is dense in V, then V is separable. In the real case, the set of linear combinations of elements of A with rational coefficients is a countable dense set in V. In the complex case, one can use coefficients with rational real and imaginary parts. For example, l p (E) is separable when E is countable and 1 p <, because the linear span of the functions δ y, y E, is dense. The same argument applies to c 0 (E) equipped with the supremum norm, and to l p (E) with 0 < p < 1, using the metric f 1 f 2 p p. The space of continuous functions on the unit interval is separable with respect to the supremum norm, because polynomials are dense. One can show that the space of continuous functions on any compact metric space is separable with respect to the supremum norm. This uses the fact that continuous functions on compact metric spaces are automatically uniformly continuous. 20 An extension lemma Let V be a real vector space, let W be a linear subspace of codimension 1 in V, and let z be an element of V \W. Thus every v V can be expressed in a unique way as (20.1) v = w + t z, where w W and t R. If λ is a linear functional on W, then any extension of λ to a linear functional µ on V is uniquely determined by its value α R at z, since (20.2) µ(w + t z) = λ(w) + t α. Any choice of α R defines an extension µ of λ in this way. Suppose now that V is equipped with a norm, and that λ is a bounded linear functional with respect to the restriction of to W. Thus there is an L 0 such that (20.3) λ(w) L w for every w W. We would like to choose α R and hence µ so that (20.4) µ(v) L v for every v V, which is the same as (20.5) λ(w) + t α L w + t z 22

for every w W and t R. This holds by hypothesis when t = 0, and for t 0 it is enough to show that (20.6) λ(w) + α L w + z for every w W, since otherwise we can replace w by t w and then take out t from both sides by homogeneity. Equivalently, we would like to choose α R such that (20.7) L w + z λ(w) α L w + z λ(w) for every w W. To do this, it suffices to show that (20.8) L w 1 + z λ(w 1 ) L w 2 + z λ(w 2 ) for every w 1, w 2 W. By hypothesis, we know that (20.9) λ(w 2 w 1 ) L w 2 w 1 for every w 1, w 2 W, which implies that (20.10) λ(w 2 w 1 ) L w 2 + z + L w 1 + z, because of the triangle inequality. This gives the desired estimate. 21 The Hahn Banach theorem Let V be a real vector space equipped with a norm, and let W be a linear subspace of V. The Hahn Banach theorem asserts that every bounded linear functional λ on W has an extension to a bounded linear functional µ on V with the same norm. If W has finite codimension in V, then one can apply the procedure described in the previous section finitely many times. If V is separable, then one can apply this procedure repeatedly to extend λ to a dense linear subspace of V, and then to all of V by continuity. Otherwise, there is an argument based on the axiom of choice. As an application, it follows that for every v V there is a bounded linear functional µ on V with norm 1 such that (21.1) µ(v) = v. To see this, one can start with the linear functional on the 1-dimensional subspace spanned by v defined by (21.2) λ(r v) = r v, r R. This has norm 1, and a norm-1 extension to V has the desired properties. 23

Similarly, if W 0 is a closed linear subspace of V and v V \W 0, then there is a bounded linear functional µ on V such that (21.3) and (21.4) µ(v) 0 µ(w) = 0 for every w W 0. For it is easy to find a bounded linear functional on the span of W 0 and v with these properties, which can then be extended to V. 22 Complex vector spaces Let V be a complex vector space, which is then also a real vector space, since we can simply forget about multiplication by i. If λ is a linear functional on V as a complex vector space, then the real part of λ is a linear functional on V as a real vector space. The imaginary part of λ can be recovered from the real part, by the formula (22.1) Im λ(v) = i Re λ( i v). Similarly, any linear functional on V as a real vector space can be expressed as the real part of a linear functional on V as a complex vector space. Suppose that V is equipped with a norm, which is also a norm on V as a real vector space. If λ is a bounded linear functional on V as a complex vector space, then one can show that the norm of λ is equal to the norm of the real part of λ as a bounded linear functional on V as a real vector space. This uses the fact that the norm of any v V is equal to the norm of c v for every complex number c with c = 1. Also, the modulus of a complex number z is the same as the maximum of the real parts of the complex numbers c z with c C and c = 1. Every bounded linear functional on V as a real vector space is the real part of a bounded linear functional on V as a complex vector space, as in the previous paragraph. This permits questions about linear functionals on complex vector spaces to be reduced to questions about linear functionals on real vector spaces. In particular, the Hahn Banach theorem also applies to complex vector spaces. 23 The weak topology Let V be a real or complex vector space equipped with a norm v, and let V be the dual space of bounded linear functionals on V with the dual norm λ. As usual, the dual norm determines a metric on V, and hence a topology on V. We are also interested in another topology on V, known as the weak topology. A set U V is an open set in the weak topology if for every λ U there are finitely many vectors v 1,..., v n V and positive real numbers r 1,...,r n such that (23.1) {µ V : µ(v j ) λ(v j ) < r j, 1 j n} U. 24

Equivalently, (23.2) {µ V : µ(v j ) λ(v j ) < r j, 1 j n} is an open set in V with respect to the weak topology for every λ V, v 1,..., v n V, and r 1,...,r n > 0, and these sets form a base for the weak - topology. If U V is an open set with respect to the weak topology, then U is also an open set with respect to the topology determined by the dual norm. However, open balls in V with respect to the dual norm are not open sets in the weak topology, unless V is finite-dimensional. For each v V, (23.3) λ λ(v) defines a linear functional on V. More precisely, this is a bounded linear functional on V with respect to the dual norm, since (23.4) λ(v) λ v, by definition of the dual norm. The norm of this linear functional on V is actually equal to v, by the Hahn Banach theorem. These linear functionals are also continuous on V with respect to the weak topology, by definition of the weak topology. The weak topology can be described as the weakest topology on V in which these linear functionals are continuous. 24 Seminorms A nonnegative real-valued function N(w) on a real or complex vector space W is said to be a seminorm if (24.1) N(t w) = t N(w) for every w W and t R or C, as appropriate, and (24.2) N(w + z) N(w) + N(z) for every w, z W. These are the same conditions as for a norm, except that N(w) = 0 may occur when w 0. Suppose that N is a collection of seminorms on W which satisfies the positivity condition that for every w W with w 0, (24.3) N(w) > 0 for some N N. As in the case of a single norm, there is a nice topology on W determined by N, Specifically, U W is an open set in this topology if for every u U there are finitely many seminorms N 1,...,N l N and positive real numbers r 1,..., r l such that (24.4) {w W : N j (w u) < r j, 1 j l} U. 25

Equivalently, (24.5) {w W : N j (w u) < r j, 1 j l} is an open set in W with respect to this topology for every u W, N 1,..., N l in N, and r 1,..., r l > 0, and these sets form a base for the topology. The positivity condition ensures that this topology is Hausdorff. For example, if µ is a linear functional on W, then (24.6) N(w) = µ(w) is a seminorm on W. The weak topology on the dual V of a vector space V corresponds to the family of seminorms (24.7) N v (λ) = λ(v), v V. If N consists of only finitely many seminorms N 1,...,N k on W, then their maximum (24.8) N(w) = max(n 1 (w),..., N k (w)) is a norm on W, and the topology on W corresponding to N is the same as the usual one determined by N. If N consists of an infinite sequence N 1, N 2,... of seminorms on W, then the corresponding topology on W can be described by a metric. For each j 1, one can check that (24.9) ρ j (u, w) = min(n j (u w), 1/j) is a semimetric on W. This means that ρ j (u, w) satisfies the same conditions as a metric, except that ρ j (u, w) = 0 can occur when u w. One can also check that (24.10) ρ(u, w) = max{ρ j (u, w) : j 1} is a metric on W, and that the topology on W determined by this metric is the same as the topology corresponding to the sequence of seminorms as before. 25 The weak topology, 2 Let V be a real or complex vector space with a norm v, and let V be the dual space of bounded linear functionals on V with the dual norm λ. Also let (25.1) B = {λ V : λ 1} be the closed unit ball in V. As in the previous section, the weak topology on V is the same as the topology corresponding to the family of seminorms (25.2) N v (λ) = λ(v), v V. For A V, consider the family of seminorms N A on V consisting of N v with v A. If the linear span of A is dense in V, then the topology on B induced 26

by the weak topology on V is the same as the topology induced by the one corresponding to N A. This is easy to see, and it works just as well for any subset of V which is bounded with respect to the dual norm. If V is separable, then we can take A to be a countable set. As in the previous section, the topology corresponding to N A is then determined by a metric. Thus the topology on B or other bounded subsets of V induced by the weak topology can be described by a metric in this case. Technically, the term weak topology on V should perhaps only be used when V is complete. If V is not complete, then V can be isometrically embedded as a dense linear subspace of a Banach space. Although V and its completion have the same dual space, the additional elements of the completion can affect the weak topology on the dual. However, this does not matter for the topology on bounded subsets of the dual induced by the weak topology, by the earlier remarks. 26 The Banach Alaoglu theorem Let V be a real or complex vector space equipped with a norm v, and let V be the dual space with dual norm λ. The Banach Alaoglu theorem states that the closed unit ball B in V is compact with respect to the weak topology. As usual, each v V determines a linear functional (26.1) λ λ(v) on V. This defines a mapping from V into the Cartesian product of copies of R or C, as appropriate, parameterized by v V. One can check that this mapping is a homeomorphism from V onto its image in the Cartesian product with respect to the topology induced by the product topology, because of the way that the weak topology is defined. One can also check that the image of B under this mapping is a closed set with respect to the product topology. The image of B is also contained in the product of closed intervals or disks, as appropriate, which implies compactness. If V is separable, then one can argue more directly that every sequence {λ j } in B has a subsequence that converges to an element of B in the weak topology. For each v V, one can use the compactness of closed and bounded subsets of R or C to get a subsequence {λ jl } l=1 of {λ j} such that {λ jl (v)} converges. By standard arguments, this can be refined to show that there is a subsequence which converges pointwise on a countable subset of V. Hence there is a subsequence that converges on a dense set in V when V is separable. Using the fact that these linear functionals all have norm less than or equal to 1, one can show that this subsequence actually converges pointwise everywhere on V, and that the limit is also a linear functional with norm less than or equal to 1. 27

27 The weak topology Let V be a real or complex vector space equipped with a norm v. As in Section 24 each bounded linear functional λ on V determines a seminorm on V, given by (27.1) N λ (v) = λ(v). The topology on V defined by the family of seminorms N λ, λ V, is called the weak topology. Note that for each v V there is a λ V such that λ(v) 0 and hence N λ (v) > 0, by the Hahn Banach theorem, so that this family of seminorms satisfies the usual positivity condition. If U V is an open set with respect to the weak topology, then U is also an open set with respect to the topology associated to the norm. However, an open ball in V is not an open set with respect to the weak topology, unless V has finite dimension. If W is a linear subspace of V which is closed in the norm topology, then W is also closed in the weak topology, by the Hahn Banach theorem. Each bounded linear functional on V is also continuous with respect to the weak topology, and the weak topology is the weakest topology on V with this property. The weak topology can also be defined on the dual V of V, using bounded linear functionals on V with respect to the dual norm. As in Section 23, (27.2) λ λ(v) defines a bounded linear functional on V for each v V, which implies that every open set in V with respect to the weak topology is also an open set in the weak topology on V. If every bounded linear functional on V is given by evaluation at an element of V in this way, then V is said to be reflexive. Thus the weak and weak topologies on V are the same when V is reflexive. Hilbert spaces are automatically reflexive, because of the way that they can be identified with their dual spaces. If E is a nonempty set and 1 < p <, then l p (E) is also reflexive. As in Section 18, the dual of l p (E) can be identified with l q (E), where q is the conjugate exponent corresponding to p. For the same reasons, the dual of l q (E) can be identified with l p (E). As in Sections 15 and 16, the dual of c 0 (E) can be identified with l 1 (E) and the dual of l 1 (E) can be identified with l (E), which is not the same as c 0 (E) when E has infinitely many elements. 28 Seminorms, 2 Let W be a real or complex vector space, and let N be a family of seminorms on W that satisfies the positivity condition that for each w W there is an N N such that (28.1) N(w) > 0. As in Section 24, this leads to a nice topology on W. Let us say that a linear functional ψ on W is bounded with respect to N if there are finitely many 28

seminorms N 1,..., N l N and A 0 such that (28.2) ψ(w) A max(n 1 (w),..., N l (w)) for each w W. This implies that (28.3) ψ(u) ψ(w) A max(n 1 (u w),..., N l (u w)) for every u, w W, and it is easy to see that ψ is therefore continuous with respect to the topology on W corresponding to N. Conversely, suppose that ψ is a linear functional on W which is continuous with respect to the topology corresponding to N. This implies that (28.4) U = {w w : ψ(w) < 1} is an open set in this topology. Since 0 U, this means that there are finitely many seminorms N 1,...,N l N and positive real numbers r 1,..., r l > 0 such that (28.5) {w w : N j (w) < r j, 1 j l} U, by definition of the topology on W corresponding to N. Equivalently, ψ(w) < 1 when (28.6) N 1 (w) < r 1,...,N l (w) < r l, which implies that (28.7) ψ(w) max(r1 1 N 1 (w),..., r 1 N l (w)), l and hence that ψ is bounded with respect to N. For example, let Φ be a collection of linear functionals on W with the property that for each w W there is a φ Φ such that φ(w) 0. Let N Φ be the family of seminorms (28.8) N φ (w) = φ(w) on W, φ Φ, which satisfies the positivity condition by hypothesis. Each φ Φ is a continuous linear functional on W with respect to the topology corresponding to N Φ, as well as any finite linear combination of elements of Φ. Conversely, any linear functional ψ on W which is continuous with respect to the topology associated to N Φ can be expressed as a linear combination of finitely many elements of Φ. For if ψ is continuous, then it is bounded with respect to N Φ, and there are φ 1,..., φ l Φ and A 0 such that (28.9) ψ(w) A max( φ 1 (w),..., φ l (w) ) for each w W. In particular, ψ(w) = 0 when (28.10) φ 1 (w) = = φ l (w) = 0. It follows from standard arguments in linear algebra that ψ is a linear combination of φ 1,..., φ l, as desired. 29

29 Convergent sequences Let (M, d(, )) be a metric space. By definition, a sequence {x j } of elements of M converges to x M if and only if (29.1) lim d(x j, x) = 0 j as a sequence of real numbers. In particular, if W is a vector space with a norm W, then a sequence of vectors {w j } converges to w W with respect to the norm if and only if (29.2) lim w j w W = 0. j If instead the topology on W is determined by a family N of seminorms on W, then one can check that {w j } converges to w if and only if (29.3) lim N(w j w) = 0 j for each N N. Let V be a real or complex vector space equipped with a norm, and let V be the dual space of bounded linear functionals on V equipped with the dual norm. A sequence {v j } of vectors in V converges to v V in the weak topology if and only if (29.4) lim λ(v j) = λ(v) j as a sequence of real or complex numbers for each λ V. Similarly, a sequence {λ j } of bounded linear functionals on V converges to λ V in the weak topology if and only if (29.5) lim λ j(v) = λ(v) j as a sequence of real or complex numbers for each v V. In a metric space M, the topology is determined by convergence of sequences, because closed subsets of M can be characterized in terms of convergent sequences. This also works in topological spaces which satisfy the first countability condition, for which there is a countable local base for the topology at every point, but it does not work in arbitrary topological spaces. In some circumstances, the induced topology on interesting subsets of a topological space X may satisfy the first countability condition, even if X does not enjoy this property itself. For example, this is the case for bounded subsets of the dual V of a separable vector space V with a norm, with respect to the weak topology on V. Suppose that {λ j } is a sequence of bounded linear functionals on a vector space V with a norm which is uniformly bounded in the sense that (29.6) λ j L for some L 0 and each j 1. If {λ j (v)} converges as a sequence of real or complex numbers for a set of v V whose linear span is dense in V, then one 30